. 24/7 Space News .
STELLAR CHEMISTRY
VLT Working as 16-Meter Telescope for First Time
by Staff Writers
Garching, Germany (SPX) Feb 14, 2018

File photo.

One of the original design goals of ESO's Very Large Telescope (VLT) was for its four Unit Telescopes (UTs) to work together to create a single giant telescope. With the first light of the ESPRESSO spectrograph using the four-Unit-Telescope mode of the VLT, this milestone has now been reached [1].

After extensive preparations by the ESPRESSO consortium (led by the Astronomical Observatory of the University of Geneva, with the participation of research centres from Italy, Portugal, Spain and Switzerland) and ESO staff, ESO's Director General Xavier Barcons initiated this historic astronomical observation with the push of a button in the control room.

ESPRESSO instrument scientist at ESO, Gaspare Lo Curto, explains the historical significance of this event: "ESO has realised a dream that dates back to the time when the VLT was conceived in the 1980s: combining the light of all four Unit Telescopes on Cerro Paranal to feed a single instrument!"

When all four 8.2-metre Unit Telescopes combine their light-collecting power to feed a single instrument, the VLT effectively becomes the largest optical telescope in the world in terms of collecting area.

Two of the main scientific goals of ESPRESSO are the discovery and characterisation of Earth-like planets and the search for possible variability of the fundamental constants of physics.

The latter experiments in particular require the observation of distant and faint quasars, and this science goal will benefit the most from combining the light from all four Unit Telescopes in ESPRESSO. Both rely on the ultra-high stability of the instrument and an extremely stable reference light source.

Due to the complexity involved, the combination of light from all four Unit Telescopes in this way, at what is known as an "incoherent focus", had not been implemented until now. However, space for it was built into the telescopes and the underground structure of the mountaintop from the start [2].

A system of mirrors, prisms and lenses transmits the light from each VLT Unit Telescope to the ESPRESSO spectrograph up to 69 metres away. Thanks to these complex optics, ESPRESSO can either collect the light from up to all four Unit Telescopes together, increasing its light-gathering power, or alternatively receive light from any one of the Unit Telescopes independently, allowing for more flexible usage of observing time. ESPRESSO was specially developed to exploit this infrastructure.

Light from the four Unit Telescopes is routinely brought together in the VLT Interferometer for the study of extremely fine detail in comparatively bright objects. But interferometry, which combines the beams "coherently", cannot exploit the huge light-gathering potential of the combined telescopes to study faint objects [3].

Project Scientist Paolo Molaro comments: "This impressive milestone is the culmination of work by a large team of scientists and engineers over many years. It is wonderful to see ESPRESSO working with all four Unit Telescopes and I look forward to the exciting science results to come."

Feeding the combined light into a single instrument will give astronomers access to information never previously available. This new facility is a game changer for astronomy with high-resolution spectrographs. It makes use of novel concepts, such as wavelength calibration aided by a laser frequency comb, providing unprecedented precision and repeatability, and now the capability to join together the light-collecting power of the four individual Unit Telescopes [4].

"ESPRESSO working with all four Unit Telescopes gives us an enticing foretaste of what the next generation of telescopes, such as ESO's Extremely Large Telescope, will offer in a few years," concludes ESO's Director General, Xavier Barcons.

Notes
[1] ESPRESSO - the next generation planet hunter - made its very first observations on 6 December 2017 using just one of the four 8.2-metre diameter Unit Telescopes (UTs) that make up the VLT.

[2] The word "incoherent" means that the light from the four telescopes is simply added up, without the phase information being considered in the way that it is in the VLT Interferometer.

[3] The new incoherent combination of light has the light-collecting power comparable to a 16-metre aperture telescope. However, the angular resolution remains that of a single 8-metre telescope, unlike in the VLT Interferometer where the resolution is increased to that of a (virtual) telescope with an effective aperture equal to the maximum separation between the constituent telescopes.

[4] The "AstroComb", a wavelength calibration system based on a laser frequency comb, was developed and manufactured by Menlo Systems GmbH in Martinsried, Germany.


Related Links
European Southern Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New use for telecommunications networks: Helping scientists peer into deep space
Washington DC (SPX) Feb 07, 2018
For the first time, researchers have demonstrated that a stable frequency reference can be reliably transmitted more than 300 kilometers over a standard fiber optic telecommunications network and used to synchronize two radio telescopes. Stable frequency references, which are used to calibrate clocks and instruments that make ultraprecise measurements, are usually only accessible at facilities that generate them using expensive atomic clocks. The new technology could allow scientists anywhere to access ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Trump's Privatized ISS 'Not Impossible,' but Would Require 'Renegotiation'

Russian Resupply Ship Delivers Three Tons of Cargo

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

Holograms and mermaids: Top trends at Nuremberg toy fair

STELLAR CHEMISTRY
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

STELLAR CHEMISTRY
Mars Rover Opportunity Reaches 5000 Sols On Mars

Oppy Takes A Selfie To Mark Sol 5000

A Piece of Mars is Going Home

Danish architect envisions life on Mars

STELLAR CHEMISTRY
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

STELLAR CHEMISTRY
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

STELLAR CHEMISTRY
University Holds Tenth Annual Space Horizons Workshop

Tricking photons leads to first-of-its-kind laser breakthrough

Self-Driving Servicer Now Baselined for NASA's Restore-L Satellite-Servicing Demonstration

Navy turns to Raytheon for aircraft sensor upgrades

STELLAR CHEMISTRY
Kepler Scientists Discover Almost 100 New Exoplanets

Deep-sea fish use hydrothermal vents to incubate eggs

'Oumuamua has been tumbling about the galaxy for a billion years

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

STELLAR CHEMISTRY
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.