. 24/7 Space News .
TIME AND SPACE
Using particle accelerators to investigate the quark-gluon plasma of early universe
by Staff Writers
Washington DC (SPX) Aug 10, 2021

file illustration only

In the early stages of the Universe, quarks and gluons were quickly confined to protons and neutrons which went on to form atoms. With particle accelerators reaching increasingly higher energy levels the opportunity to study this fleeting primordial state of matter has finally arrived.

Quark-Gluon Plasma (QGP) is a state of matter which existed only for the briefest of times at the very beginning of the Universe with these particles being quickly clumped together to form the protons and neutrons that make up the everyday matter that surrounds us.

The challenge of understanding this primordial state of matter falls to physicists operating the world's most powerful particle accelerators. A new special edition of EPJ ST entitled 'Quark-Gluon Plasma and Heavy-Ion Phenomenology' edited by Munshi G. Mustafa, Saha Institute of Nuclear Physics, Kolkata, India, brings together seven papers that detail our understanding of QGP and the processes that transformed it into the baryonic matter around us on an everyday basis.

"Quark-Gluon Plasma is the strongly interacting deconfined matter which existed only briefly in the early universe, a few microseconds after the Big Bang," says Mustafa.

"The discovery and characterisation of the properties of QGP remain some of the best orchestrated international efforts in modern nuclear physics." Mustafa highlights Heavy Ion Phenomenology as providing a very reliable tool to determine the properties of QGP and in particular, the dynamics of its evolution and cooling.

Improvements at colliders such as the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have radically increased the energy levels that can be attained by heavy nuclei collisions at near-light speeds bringing them in line with those of the infant Universe. In addition to this, future experiments at the Facility for Antiproton and Ion Research (FAIR) and at the Nuclotron-based Ion Collider fAcility (NICA) will generate a wealth of data on QGP and the conditions in the early Universe.

"This collection is so timely as it calls for a better theoretical understanding of particle properties of hot and dense deconfined matter, which reflect both static and dynamical properties of QGP," explains Mustafa. "This improved theoretical understanding of Quark-Gluon Plasma and Heavy Ion Phenomenology is essential for uncovering the properties of the putative QGP which occupied the entire universe, a few microseconds after Big Bang."

Mustafa points out that this improved understanding should also open the doorway to understanding the equation of state of this strongly interacting matter and prepare the platform to explore the theory of quark-hadron transition and the possible thermalisation of the QGP. This could in turn help us understand the steps that led from QGP to the everyday baryonic matter that surrounds us.

"The quarks and gluons which formed the neutrons and protons were confined into them, a few microseconds after the Big Bang," concludes Mustafa. "This is the first time when we have seen them being liberated from their eternal confinement!"

Research Report: "Quark-Gluon Plasma and Heavy-ion Phenomenology"


Related Links
Springer
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Antimatter from laser pincers
Dresden, Germany (SPX) Jul 24, 2021
In the depths of space, there are celestial bodies where extreme conditions prevail: Rapidly rotating neutron stars generate super-strong magnetic fields. And black holes, with their enormous gravitational pull, can cause huge, energetic jets of matter to shoot out into space. An international physics team with the participation of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now proposed a new concept that could allow some of these extreme processes to be studied in the laboratory in the future: ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Northrop Grumman set to launch 16th cargo delivery mission to ISS

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

NASA mulls how to dispose of International Space Station

NASA says Russian media allegations US astronaut drilled hole in ISS 'not credible'

TIME AND SPACE
Musk says next Moon landing will probably be sooner than in 2024

Boeing to remove Starliner from rocket, months-long delay expected

Netflix plans series on historic SpaceX Inspiration4 mission

Next Vega mission to orbit Pleiades Neo 4 EO bird and 4 small science sats

TIME AND SPACE
Trio of orbiters shows small dust storms help dry out Mars

Mars rock drilling begins after NASA's helicopter helps plan rover's route

NASA is recruiting for yearlong simulated Mars Mission

Is Curiosity exploring surface sediments or lake deposits

TIME AND SPACE
Chinese rocket for Tianzhou-3 mission arrives at launch site

Tianhe astronauts use free time to watch ping-pong and exercise

Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

TIME AND SPACE
Microsoft unveils Australian Space Startup launchpad

Business growth scheme open to next group of space entrepreneurs

BlackSky to expand constellation with three back-to-back missions

Skykraft to begin launch of space-based air traffic management constellation

TIME AND SPACE
NASA Exploration has LEGS

NSF awards funding for next-generation VLA antenna development

Microsoft protests Amazon win of big US cloud contract

Purdue-designed heat transfer experiment arrives at International Space Station

TIME AND SPACE
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.