. | . |
Ushering in the next generation of technology by Staff Writers Mumbai, India (SPX) Apr 28, 2021
From Cat's-Whisker detectors in the early 1900s to electronic circuit chips in modern-day mobile phones, electronic devices have been modified in myriad creative ways to adapt to the needs of humankind. Apart from increasing the efficiency of conventionally used semiconductors such as silicon, recent research has focused on exploring more cost effective semiconductor materials. In tune with these requirements, a new publication in Nature Materials has successfully tweaked low cost semiconducting materials, quite similar to the composition of plastic, into conducting electricity more efficiently than before. Solar cells have the property to convert sunlight into electrical energy. This is a renewable source of energy and scientists have been trying to increase the efficiency of solar cells to maximise the utilisation of the sunlight that we receive. While silicon has been a widely used semiconductor material in modern day solar cells, many research efforts have been directed towards experimenting with combinations of silicon with other materials to drive up the efficiency of a solar cell. Other endeavours include the use of novel materials that can be modified to convert sunlight into energy. One such class of materials that is being experimented with is similar to plastic. Though these materials give more room for tuning their structure and function, they have still not been able to rival existing silicon based semiconductor devices when it comes to efficiency. In this study, the researchers attempt to increase the conductivity of this plastic material with the help of two inexpensive and easily available chemicals: dimethyl sulphoxide (DMSO) and hydrobromic acid (HBr). As a result of the chemical reactions in the semiconductor material, one of the by-products formed is water, thus making this reaction quite clean. Also, the components of this set-up are easily available and inexpensive, thus making it commercially viable. The cost of this material is 5000 times less than the existing class of material used for the same purpose. The researchers involved in this study, led by Pabitra Nayak from the Tata Institute of Fundamental Research, Hyderabad, observed that this new semiconductor device steadily conducts electricity even after prolonged operation at 100C. The researchers have demonstrated the use of this method in fabricating the state-of-the-art new generation solar cell, transistors and light emitters. While this new method holds promise for developing the next generation of solar cells, it can also improve the quality of display in mobile phones and high definition television. Apart from these uses, this material may potentially become a game changer in developing devices such as wearable electronics, biosensors and bioelectronics. While the reported chemical partnership is good news, this study also opens up multiple avenues for exploring how one may resort to creating more efficient semiconductors with a right mix of compatible chemicals to further improve the existing class of electronic devices.
NASA selects innovative, early-stage tech concepts for continued study Washington DC (SPX) Apr 09, 2021 NASA encourages researchers to develop and study unexpected approaches for traveling through, understanding, and exploring space. To further these goals, the agency has selected seven studies for additional funding - totaling $5 million - from the NASA Innovative Advanced Concepts (NIAC) program. The researchers previously received at least one NIAC award related to their proposals. "Creativity is key to future space exploration and fostering revolutionary ideas today that may sound outlandish wil ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |