. | . |
Excited reports of 'habitable planets' need to come back down to Earth by Joshua Tan for The Conversation Santiago, Chile (SPX) Feb 22, 2017
In 1950, physicist Enrico Fermi famously asked, "Where are they?" as a kind of lament about the lack of observational evidence for alien intelligence in our universe. Today, the question is still asked in the context of the always-hoped-for discovery of other worlds like our own, with the thought that maybe, just maybe, we will finally find those aliens. Against this backdrop, advances that have occurred in the past 20 years in the field of exoplanet discovery have excited the imaginations of scientists and enthusiasts alike. When, the question goes, will we finally discover a planet that can sustain life? When will we discover Earth 2.0? The impatience associated with this question has led many in the media and even some in the scientific community to make premature declarations that an "Earth analogue" has been discovered. But when exoplanets are discovered, claims that they are similar to Earth are based on, at best, optimistic modelling and, at worst, sensationalism. Many such claims have been made on the basis of invented ranking systems that use the observed properties of exoplanets to extrapolate how Earth-like a planet might be. Unfortunately, these systems must make extremely simple - and almost certainly incorrect - assumptions about the characteristics of the planets they are trying to describe.
Ranking habitability: not so easy But if a planet has an atmospheric composition different from Earth's, its true surface temperature is likely to be completely different. Gaseous planets do not even have a well-defined surface to consider. And, for rocky planets, a thinner atmosphere can make them much colder (especially at night) while a thicker atmosphere can make them much hotter. One of the most dramatic examples of this problem is Venus. Owing to its thick atmosphere and a runaway greenhouse effect, the planet has a temperature of a whopping 450C - far higher than than the 25C you would calculate given an Earth-like atmosphere. Although Venus lies within our Sun's nominal habitable zone, it is surely not accurate to call it habitable. The two most fruitful methods for discovering exoplanets (the "transit method" and the "radial velocity method") both give a straightforward way to determine the distance between a star and an exoplanet. That, together with our knowledge of how much heat is given off by the star, lets us calculate whether the planet is in the star's habitable zone. But, as we have seen, that is not the same thing as discovering a habitable planet. Nevertheless, discoveries of planets in the habitable zones of other stars have been identified in the media and even in press releases of scientific institutions as discoveries of second Earths. Since we do not know the surface temperatures of any exoplanet, whether they are actual Earth analogues can only be guessed at using other lines of evidence.
Learning more about exoplanets The transit method detects the shadow a planet casts on the star it is orbiting, allowing the planet's area (and, because planets are spheres, its volume) to be measured. What is not directly discoverable from this method, however, is the planet's mass. Alternatively, the radial velocity method detects a planet via a wobble in the star's motion that can be used to infer a minimum possible planetary mass tugging on the star with its gravity. In many cases, the tug is being done at an angle so we see a reduced effect, which makes us infer a mass that is smaller than the actual mass of planet. Aside from this potential confusion, there is no way via the radial velocity method alone to determine a planet's volume. Astrophysicists who model planet formation and composition have proposed a variety of models that offer possible relationships between the volumes and masses of planets depending on planet compositions. The smallest planets in our own solar system are rocky and the largest planets are gaseous, but we see a number of exoplanets whose sizes lie between the smallest gaseous planet (Neptune) and the largest rocky planet (Earth). We have models that can accommodate "super-Earths" that are rocky or "mini-Neptunes" that are gaseous and all manner of hybrids in between. These varied models can accommodate a range of atmospheres, and the exoplanets will have very different surface temperatures depending on all of this. It is therefore of some importance that we learn more about exoplanet atmospheres directly using better telescopes and more sensitive techniques. Some astronomers have proposed a scheme to decide which exoplanets are most likely to have their atmospheres directly detected - the obvious next step in working towards determining a planet's surface temperature and ultimately whether it is habitable.
Jumping the gun Crucially, none of these "analogues" has yet been measured in both ways. But almost every time such planets are discovered, breathless reports of their possible import are generated. While discoveries of exoplanets are exciting, it is definitely premature to try to decide how Earth-like any planet is or is not on the basis of the scant data we are now able to gather. The best we can hope to do at this time is collate a list of possible targets for future observation. Someday, we may discover definitive proof that another Earth is out there. But that day has not yet arrived - despite the excited Until we get better tools, excited reports of 'habitable planets' need to come back down to Earths.
Washington DC (SPX) Feb 22, 2017 New planetary formation models from Carnegie's Alan Boss indicate that there may be an undiscovered population of gas giant planets orbiting around Sun-like stars at distances similar to those of Jupiter and Saturn. His work is published by The Astrophysical Journal. The population of exoplanets discovered by ongoing planet-hunting projects continues to increase. These discoveries can improve mo ... read more Related Links Instituto de Astrofisica, Universidad Catolica de Chile Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |