. 24/7 Space News .
STELLAR CHEMISTRY
Unraveling a mystery surrounding cosmic matter
by Staff Writers
Riverside CA (SPX) Sep 09, 2022

Yanou Cui is an associate professor of physics and astronomy at UC Riverside.

Early in its history, shortly after the Big Bang, the universe was filled with equal amounts of matter and "antimatter" - particles that are matter counterparts but with opposite charge. But then, as space expanded, the universe cooled. Today's universe is full of galaxies and stars which are made of matter. Where did the antimatter go, and how did matter come to dominate the universe? This cosmic origin of matter continues to puzzle scientists.

Physicists at the University of California, Riverside, and Tsinghua University in China have now opened a new pathway for probing the cosmic origin of matter by invoking the "cosmological collider."

Not just any collider
High energy colliders, such as the Large Hadron Collider, have been built to produce very heavy subatomic elementary particles that may reveal new physics. But some new physics, such as that explaining dark matter and the origin of matter, can involve much heavier particles, requiring much higher energy than what a human-made collider can provide. It turns out the early cosmos could have served as such a super-collider.

Yanou Cui, an associate professor of physics and astronomy at UCR, explained that it is widely believed that cosmic inflation, an era when the universe expanded at an exponentially accelerating rate, preceded the Big Bang.

"Cosmic inflation provided a highly energetic environment, enabling the production of heavy new particles as well as their interactions," Cui said. "The inflationary universe behaved just like a cosmological collider, except that the energy was up to 10 billion times larger than any human-made collider."

According to Cui, microscopic structures created by energetic events during inflation got stretched as the universe expanded, resulting in regions of varying density in an otherwise homogeneous universe. Subsequently, these microscopic structures seeded the large-scale structure of our universe, manifested today as the distribution of galaxies across the sky. Cui explained that new subatomic particle physics may be revealed by studying the imprint of the cosmological collider in the cosmos' contents today, such as galaxies and the cosmic microwave background.

Cui and Zhong-Zhi Xianyu, an assistant professor of physics at Tsinghua University, report in the journal Physical Review Letters that by applying the physics of the cosmological collider and using precision data for measuring the structure of our universe from upcoming experiments such as SPHEREx and 21 cm line tomography, the mystery of the cosmic origin of matter may be unraveled.

"The fact that our current-day universe is dominated by matter remains among the most perplexing, longstanding mysteries in modern physics," Cui said. "A subtle imbalance or asymmetry between matter and antimatter in the early universe is required to achieve today's matter dominance but cannot be realized within the known framework of fundamental physics."

Leptogenesis to the rescue
Cui and Xianyu propose testing leptogenesis, a well-known mechanism that explains the origin of the baryon - visible gas and stars - asymmetry in our universe. Had the universe begun with equal amounts of matter and antimatter, they would have annihilated each other into photon radiation, leaving nothing. Since matter far exceeds antimatter today, asymmetry is required to explain the imbalance.

"Leptogenesis is among the most compelling mechanisms generating the matter-antimatter asymmetry," Cui said. "It involves a new fundamental particle, the right-handed neutrino. It was long thought, however, that testing leptogenesis is next to impossible because the mass of the right-handed neutrino is typically many orders of magnitudes beyond the reach of the highest energy collider ever built, the Large Hadron Collider."

The new work proposes to test leptogenesis by decoding the detailed statistical properties of the spatial distribution of objects in the cosmic structure observed today, reminiscent of the microscopic physics during cosmic inflation. The cosmological collider effect, the researchers argue, enables the production of the super-heavy right-handed neutrino during the inflationary epoch.

"Specifically, we demonstrate that essential conditions for the asymmetry generation, including the interactions and masses of the right-handed neutrino, which is the key player here, can leave distinctive fingerprints in the statistics of the spatial distribution of galaxies or cosmic microwave background and can be precisely measured," Cui said. "The astrophysical observations anticipated in the coming years can potentially detect such signals and unravel the cosmic origin of matter."

Cui was supported in the research by a grant from the U.S. Department of Energy.

Research Report:Probing Leptogenesis with the Cosmological Collider


Related Links
University of California - Riverside
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
The global hunt for dark matter has arrived in Australia at the Stawell Underground Physics Laboratory
Melbourne, Australia (SPX) Aug 24, 2022
Located 1km underground in the Stawell Gold Mine, the first dark matter laboratory in the southern hemisphere is preparing to join the global quest to understand the nature of dark matter and unlock the secrets of our universe. Recently unveiled, the Stawell Underground Physics Laboratory (SUPL) will be the new epicentre of dark matter research in Australia. Lead researcher on the project, Professor Elisabetta Barberio from the University of Melbourne, said dark matter has been eluding scien ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US should end ISS collaboration with Russia

NASA-funded technology helps relieve symptoms of menopause

NASA, Axiom Space to launch second private astronaut mission to ISS in 2023

NASA repairs issue with Voyager 1 space probe

STELLAR CHEMISTRY
Uncrewed Blue Origin rocket crashes, capsule recovered

Ariane 5 launches EUTELSAT KONNECT VHTS satellite

Space launch from Australia to use satellite tracking from Inmarsat

Teams continue to review options for next Artemis I launch attempt

STELLAR CHEMISTRY
Martian rock-metal composite shows potential of 3D printing on Mars

Glaciers flowed on ancient Mars, but slowly

Everything is Dust in the Wind

A vast and mysterious valley system in the southern Martian highlands

STELLAR CHEMISTRY
Rocket to carry Mengtian space lab module arrives at launch site

Duo undertake 7-hour spacewalk

Chinese scientist advocates int'l cooperation in space science

China's Shenzhou-14 astronauts carry out spacewalk

STELLAR CHEMISTRY
MDA Selected by Airbus OneWeb Satellites for US Government Program

How space helps connect everyone everywhere

Falcon 9 launches BlueWalker 3 to Low Earth Orbit

Scotland's space sector set to become greenest on Earth

STELLAR CHEMISTRY
New ice-shedding coating is 100x stronger than others

Ocean lidar remote sensing technology based on Brillouin scattering spectrum

Porosity in metals additively manufactured by laser powder bed fusion

How the tide turned on data centres in Europe

STELLAR CHEMISTRY
Surprise finding suggests 'water worlds' are more common than we thought

Two new rocky worlds around an ultra-cool star

SPECULOOS discovers a potentially habitable super-Earth

Astronomers show massive stars can steal Jupiter-sized planets

STELLAR CHEMISTRY
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.