. 24/7 Space News .
TECH SPACE
Wearable 'microbrewery' saves human body from radiation damage
by Staff Writers
West Lafayette IN (SPX) Aug 10, 2018

Workers in hospitals and nuclear facilities can wear disposable yeast badges to check their daily radiation exposure instantly.

The same way that yeast yields beer and bread can help hospital lab workers better track their daily radiation exposure, enabling a faster assessment of tissue damage that could lead to cancer.

But rather than building portable cellars or ovens, Purdue University researchers have engineered yeast "microbreweries" within disposable badges made of freezer paper, aluminum and tape. Simply adding a drop of water activates the yeast to show radiation exposure as read by an electronic device.

On a commercial level, the readout device could one day be a tablet or phone. The badge could also be adapted in the future for nuclear power plant workers and victims of nuclear disasters.

"You would use the badge when you're in the lab and recycle it after you've checked your exposure by plugging it into a device," said Manuel Ochoa, a postdoctoral researcher in Purdue's School of Electrical and Computer Engineering. Watch a YouTube video at https:/?/?youtu.?be/?U6jCUr_kYcY.

Radiology workers are regularly exposed to low doses of radiation when they obtain patient imagery, such as X-rays. While protective gear largely keeps workers within a safe range of radiation exposure, absorbing a little bit is still inevitable.

Radiation doses creeping above regulated guidelines pose risk for developing conditions such as cancer, cataracts, skin irritation or thyroid disease.

"Currently, radiology workers are required to wear badges, called dosimeters, on various parts of their bodies for monitoring their radiation exposure," said Babak Ziaie, Purdue professor of electrical and computer engineering. "They wear the badges for a month or two, and then they send them to the company that made them. But it takes weeks for the company to read the data and send a report back to the hospital. Ours give an instant reading at much lower cost."

The success of the badge lies in the quick and measurable response of yeast to radiation: The higher the radiation dose, the higher the percentage of yeast cells that die. Wetting the badge activates the cells that are still alive to eat glucose and release carbon dioxide - the same fermentation process responsible for brewing beer and making bread rise.

When carbon dioxide bubbles at the surface, ions also form. The concentration of these ions increases the electrical conductivity of yeast, which can be measured by hooking up the badge to a readout system.

"We use the change in electrical properties of the yeast to tell us how much radiation damage it incurred. A slow decrease in electrical conductivity over time indicates more damage," said Rahim Rahimi, Purdue postdoctoral researcher in electrical and computer engineering.

Numbers from the readout system translate to rads - the units used by entities like the Occupational Safety and Health Administration to specify limits on how much radiation human tissue can safely absorb. Skin of the whole body, for example, shouldn't be exposed to more than 7.5 rad over a three month period.

The researchers could detect a radiation dose as little as 1 millirad in the yeast badges, which is comparable to current commercial badges.

Yeast also is known to be genetically similar to human tissue. Data from the badges can, therefore, inform future work on how radiation damage happens to human DNA and proteins.

"For yeast, it seems that radiation primarily affects the cell walls of the membrane and mitochondria," Ochoa said. "Since biologists are already familiar with yeast, then we're more likely to understand what's causing the biological effects of radiation in organic matter."

Research Report: Yeast metabolic response as an indicator of radiation damage in biological tissue


Related Links
Purdue University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
A better device for measuring electromagnetic radiation
Boston MA (SPX) Jun 15, 2018
Bolometers, devices that monitor electromagnetic radiation through heating of an absorbing material, are used by astronomers and homeowners alike. But most such devices have limited bandwidth and must be operated at ultralow temperatures. Now, researchers say they've found a ultrafast yet highly sensitive alternative that can work at room temperature - and may be much less expensive. The findings, published in the journal Nature Nanotechnology, could help pave the way toward new kinds of astronomi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA makes progress toward planetary science decadal priorities

Recipe for a spacewalk

ISS end-of-life options

NASA announces new partnerships to develop space exploration technologies

TECH SPACE
NASA Reveals How It Would Stay Afloat Without Delivery of Russian Rocket Engines

PLD SPACE signs a 25-year concession for rocket engine testing at Teruel Airport

Aerojet Rocketdyne boosters complete simulated air-launch tests

NASA Selects US Firms to Provide Commercial Suborbital Flight Services

TECH SPACE
Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

Still no change in Opportunity's status

Sorry Elon Musk, but it's now clear that colonising Mars is unlikely

Russia Plans to Send Capsule With Microorganisms to Mars

TECH SPACE
China to launch space station Tiangong in 2022, welcomes foreign astronauts

China's SatCom launch marketing not limited to business interest

China solicits international cooperation experiments on space station

Growing US unease with China's new deep space facility in Argentina

TECH SPACE
NASA invests in concepts for a vibrant future commercial space economy

New Image Gallery For The Planetary Science Archive

Xenesis, Atlas and Laser Light form first space to ground all optical global data distribution joint venture

Bangladesh PM opens satellite ground stations

TECH SPACE
NASA studies space applications for GaN crystals

NIST shows laser ranging can 'see' 3D objects melting in fires

It's Surprisingly Hard to Go to the Sun

PhD student develops spinning heat shield for future spacecraft

TECH SPACE
Scientist begins developing instrument for finding extraterrestrial bacteria

Tiny tunnels inside garnets appear to be the result of boring microorganisms

Largest haul of extrasolar planets for Japan

Omega Centauri unlikely to harbor life

TECH SPACE
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.