24/7 Space News
USTC discovers long-range skin josephson supercurrent across a Van Der Waals ferromagnet
SPX stock illustration only
USTC discovers long-range skin josephson supercurrent across a Van Der Waals ferromagnet
by Staff Writers
Beijing, China (SPX) May 09, 2023

In a recent study published in Nature Communications, researchers discovered the long-range skin Josephson supercurrent across a van der Waals ferromagnet. The study was achieved by a research group led by Prof. XIANG Bin from Hefei National Laboratory for Physical Sciences at the Microscale, in collaboration with Associate Prof. WANG Zhi from Sun Yat-sen University (SYSU).

They bridged two spin-singlet superconductors NbSe2 (S) by constructing the van der Waals ferromagnet metal Fe3GeTe2 (F), and observed long-range supercurrent in the lateral Josephson junction (S/F/S) for the first time. The long-range supercurrent exhibits astonishing skin characteristics.

Ferromagnetism and superconductivity are two antagonistic macroscopic orderings. When the singlet supercurrent enters the ferromagnet, rapid decoherence of the Cooper pairs will be triggered. However, spin-triplet supercurrents induced in the vicinity of superconductor/ferromagnet interfaces enable transport without energy dissipation over long distances in ferromagnets, which has been proved theoretically and experimentally in recent years.

Therefore, it provides a more desirable method for constructing quantum devices without dissipation. Earlier research focused on the construction of superconducting Josephson junctions with coupled bulk ferromagnets, to achieve the observation of spin-triplet currents and the control of spin and charge degrees of freedom. However, there are few reports on the observation of spin-triplet supercurrents and related studies of interfacial properties based on heterojunctions of two-dimensional (2D) van der Waals (vdW) materials.

The research team constructed lateral vdW Josephson junctions of S/F/S by bridging two singlet vdW superconductors NbSe2 with vdW ferromagnet Fe3GeTe2 (F). The electrical properties of the S/F/S with different junction channel lengths have been studied by low-temperature electrical tests. The results showed a zero-resistance state of the S/F/S and also a long-range Josephson supercurrent (~ 300 nm). The zero-temperature superconducting critical current tends to decay with increasing channel length and disappears completely when the channel length increases to 450 nm.

More interestingly, the response of the long-range superconducting critical current to an external magnetic field perpendicular to the supercurrent channel presents a periodic oscillation pattern, which is similar to double-slit interference, rather than the conventional Fraunhofer periodic oscillation stripe. This result confirms the existence of a Josephson supercurrent with a long-range skin feature in S/F/S, that is distinctive from the Josephson superconducting current of conventional bulk channels.

Then the research team proposed two possible mechanisms for the skin feature of the long-range supercurrent. First, the Rashba spin-orbit coupling induced by the mirror symmetry breaking on the Fe3GeTe2 surface, when interacting with ferromagnetism and the s-wave superconductivity of NbSe2, may lead to 2D topological superconductivity on the Fe3GeTe2 surface.

Second, the magnetic inhomogeneity caused by the non-coplanar structure of Fe atoms in Fe3GeTe2 promotes the transformation of spin-singlet Cooper pairs into spin-triplet pairs at the surface through spin-rotation and spin-mixing, and then forms a long-range Josephson supercurrent.

The S/F/S design of the noncoplanar structure provides a new perspective to explore the interaction between ferromagnetism and superconductivity. The novel physical properties presented by this noncoplanar structure provide a platform for potential applications of new quantum functional devices in 2D superconducting spintronics and the realization of topological superconductivity.

Research Report:Long-range skin Josephson supercurrent across a van der Waals ferromagnet

Related Links
University of Science and Technology of China
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Atomic layer deposition creates advanced eco-friendly vehicle materials
Washington DC (SPX) May 09, 2023
Atomic Layer Deposition (ALD) is a manufacturing method at the atomic and near-atomic scale. Since its invention in the 1970s, ALD has been industrially applied in fields such as displays, semiconductors, and solar cells. Professor Rong Chen from Huazhong University of Science and Technology and her team have provided a detailed introduction to the latest progress of ALD in the fields of catalysis and energy materials. Publishing in the journal International Journal of Extreme Manufacturing (IF:10 ... read more

Virgin to launch commercial spaceflights in June

Prep in the pool for Europe's next astronauts

Cosmonauts transfer airlock between ISS modules

NASA selects Emily Nelson as Chief Flight Director

Rocket Lab successfully launches 2 NASA storm-monitoring satellites

Construction begins at UK's first vertical launch spaceport

Falcon Heavy launches massive GEO satellite for Viasat

SpaceX launches first expendable Falcon Heavy rocket

Check And Double Check: Sols 3821-3822

The mysterious origins of Martian meteorites

Aerovironment awarded $10M JPL to co-design and develop two helicopters for Mars Sample Return mission

Brushing Ubajnara: Sols 3819-3820

Tianzhou-5 cargo craft separates from China's space station

Final frontier is no longer alien

China to promote space science progress on five themes

China to develop satellite constellation for deep space exploration

Toshiba posts 35% decline in full-year net profit

Airbus Eurostar Neo Arabsat BADR-8 telecoms satellite shipped to launch site

SpaceX lifts another 56 Starlink satellites into lower Earth orbit

ESA recruiting for key divisional directors

Hong Kong's bamboo scaffolders preserve ancient technique

California's wet winter sparks a new gold rush

Atomic layer deposition creates advanced eco-friendly vehicle materials

USTC discovers long-range skin josephson supercurrent across a Van Der Waals ferromagnet

Hubble follows shadow play around planet-forming disk

Hunting for life's building blocks at minus 250 degrees Celsius

A stormy, active sun may have kickstarted life on Earth

Can ET detect us

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Juice's first taste of science from space

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.