. | . |
Two simple building blocks produce complex 3-D material by Staff Writers Chicago IL (SPX) May 30, 2017
Northwestern University scientists have built a structurally complex material from two simple building blocks that is the lowest-density metal-organic framework ever made. Directed by design rules developed by the scientists, uranium atoms and organic linkers self-assemble into a beautiful crystal - a large, airy 3-D net of very roomy and useful pores. The pores are so roomy, in fact, that the scientists have nestled a large enzyme inside a pore - no small feat. The material can act as a protective scaffold for enzymes. "We are building with one-atom precision," said Omar K. Farha, a research professor of chemistry in the Weinberg College of Arts and Sciences who led the research. "Our material begins at the level of individual atoms, measured by angstroms, and ends on the hundreds of microns level, where we can hold the small crystal with a tweezers and see it with the naked eye." The study was published in the May 12 issue of the journal Science. The material is very light, despite being made from uranium, one of the heaviest elements in the periodic table. (The scientists used uranium 238, a nonradioactive isotope.) The uranium atoms are so far away from each other in the structure that the metal-organic framework (MOF) takes the lowest density title from any of the competition. "It is counterintuitive," said Farha, who specializes in the rational design of MOFs for catalysis, sensing and storage applications. "This material has not been seen or predicted before. Despite its simple beginnings, our MOF's structure has an unparalleled structural complexity. And we've just scratched the surface of building sophisticated structures using simple building blocks." The discovery unveils the potential to create general design rules for self-assembly of open, complex structures from simple building blocks while also highlighting the potential of actinides, such as uranium, in materials synthesis, Farha said. Researchers now can apply the new set of design rules for bottom-up construction to synthesize various novel materials with pre-designed and predictable complex structures. ? Metal-organic frameworks are well-ordered, lattice-like crystals. The nodes of the lattices are metals, and organic molecules connect the nodes. The new MOF, called NU-1301, is made up only of uranium oxide nodes and tricarboxylate organic linker units. This simplicity makes the MOF industrially relevant. In addition to the structural complexity, NU-1301 has a very high surface area, pore volume and water stability and can be used to separate small organic molecules and large biological molecules, or enzymes, based on their sizes and charges. Each unit cell - the basic unit that repeats in three dimensions to create the crystal structure - is composed of 816 uranium nodes and 816 organic linkers. One unit cell measures 173 angstroms across, and it keeps repeating itself. The unit cells assemble into pentagons and hexagons, eventually growing into a crystal that can reach a quarter of a millimeter wide. The paper is titled "Bottom-up construction of a superstructure in a porous uranium-organic crystal."
Melbourne, Australia (SPX) May 23, 2017 An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday electronics like smart phones, computers and TVs. Interactive 3D holograms are a staple of science fiction - from Star Wars to Avatar - but the challenge for scientists trying to turn them into reality is developing holograms that are thin eno ... read more Related Links Northwestern University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |