. 24/7 Space News .
STELLAR CHEMISTRY
Turbulent convection at the heart of stellar activity
by Staff Writers
Gottingen, Germany (SPX) Mar 10, 2020

A look into the interior of the Sun and a more evolved giant star.

In their interiors, stars are structured in a layered, onion-like fashion. In those with solar-like temperatures, the core is followed by the radiation zone. There, the heat from within is led outwards by means of radiation. As the stellar plasma becomes cooler farther outside, heat transport is dominated by plasma flows: hot plasma from within rises to the surface, cools, and sinks down again.

This process is called convection. At the same time, the star's rotation, which depends on stellar latitude, introduces shear movements. Together, both processes twist and twirl magnetic field lines and create a star's complex magnetic fields in a dynamo process that is not yet fully understood.

"Unfortunately, we cannot look directly into the Sun and other stars to see these processes in action, but have to resort to more indirect methods", says Dr. Jyri Lehtinen from the Max Planck Institute for Solar System Research (MPS) in Germany, first author of the new paper published in Nature Astronomy.

In their current study, the researchers compared different stars' activity levels on the one hand, and their rotational and convective properties on the other. The goal was to determine, which properties have a strong influence on activity. This can help to understand the specifics of the dynamo process within.

Several models of the stellar dynamo have been proposed in the past, but two main paradigms prevail. While one of them puts a greater emphasis on the rotation and assumes only subtle effects of convectional flows, the other depends crucially on turbulent convection. In this type of convection, the hot stellar plasma does not rise to the surface in large-scale, sedate motions. Rather, small-scale vigorous flows dominate.

In order to find evidence for one or the other of the two paradigms, Lehtinen and his colleagues for the first time took a look at 224 very different stars. Their sample contained both main sequence stars, which are so to say in the prime of their life, and older, more evolved giant stars. Typically, both convection and rotational properties of stars change as they age.

Compared to main sequence stars, evolved stars exhibit a thicker convection zone often expanding over much of the star's diameter and sometimes superseding the radiation zone completely. This leads to longer turnover times for convective heat transport. At the same time, rotation usually slows down.

For their study, the researchers analyzed a data set obtained at Mount Wilson Observatory in California (USA), which over several years recorded the stars' emissions in wavelengths typical of calcium ions found in the stellar plasma. These emissions are not only correlated with the stars' activity level. Complex data processing also made it possible to infer the stars' rotation periods.

Like the Sun, stars are sometimes dappled with regions of extremely high magnetic field strength, so-called active regions, which are often associated with dark spots on the stars' visible surface.

"As a star rotates, these regions come into view and pass out of it leading to a periodic rise and fall in emission brightness", Prof. Dr. Maarit Kapyla from Aalto University in Finland, who also heads the research group "Solar and Stellar Dynamos" at MPS, explains. However, since stellar emissions can also fluctuate due to other effects, identifying periodic variations - especially over long periods - is tricky.

"Some of the stars we studied show rotation periods of several hundreds of days, and surprisingly still a magnetic activity level similar to the other stars, and remarkably even magnetic cycles like the Sun", says Dr. Nigul Olspert from MPS, who analyzed the data.

The Sun, in comparison, rotates rather briskly with a rotation period of only approximately 25 days at the solar equator. The convective turnover times were calculated by means of stellar structure modelling taking into account each star's mass, chemical composition, and evolutionary stage.

The scientists' analysis shows that a star's activity level does not - as had been suggested by other studies based on smaller and more uniform samples including only main sequence stars - depend only on its rotation. Instead, only if convection is accounted for, can the behavior of main-sequence and evolved stars be understood in a unified manner.

"The coaction of rotation and convection determine how active a star is", Prof. Kapyla summarizes. "Our results tip the scales in favor of the dynamo mechanism including turbulent convection", she adds.

Research paper


Related Links
Max Planck Institute For Solar System Research
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A puzzle piece from stellar chemistry could change our measurements of cosmic expansion
Heidelberg, Germany (SPX) Mar 06, 2020
Astronomers led by Maria Bergemann (Max-Planck-Institute for Astronomy) have performed chemical measurements on stars that could markedly change the way cosmologists measure the Hubble constant and determine the amount of so-called dark energy in our universe. Using improved models of how the presence of chemical elements affects a star's spectrum, the researchers found that so-called supernovae Type Ia have different properties than previously thought. Based on assumption about their brightness, cosmol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA update on Starliner flight test review

NASA: Boeing software team had too much power over Starliner capsule

Study confirms space-grown lettuce nutritious, safe

An astronaut's guide to applying to be an astronaut

STELLAR CHEMISTRY
SpaceX announces partnership to send tourists to ISS

Black Arrow marks 50 years since one and only UK satellite launch

SpaceX Dragon heads to Space Station for Monday docking

Aerojet Rocketdyne displays powerful hydrogen rocket engine at Infinity Science Center

STELLAR CHEMISTRY
Organic molecules discovered by Curiosity Rover consistent with early life on Mars

Moreux Crater on Mars offers evidence of dunes and glacial processes

Curiosity Mars Rover Snaps Highest-Resolution Panorama Yet

Virginia Middle School names NASA's next Mars rover Perseverance

STELLAR CHEMISTRY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

STELLAR CHEMISTRY
The impact of satellite constellations on astronomical observations

Blast off: space minnow Indonesia eyes celestial success

Blast off: space minnow Indonesia eyes celestial success

Kleos Space secures 3M Euro loan agreement with Dubai family office

STELLAR CHEMISTRY
Tech lifestyles enable 'safe escape' from coronavirus

Deep Space Antenna Upgrades to Affect Voyager Communications

Caltech and JPL launch hybrid high rate quantum communication systems

SpaceLogistics selected by DARPA as Commercial Partner for Robotic Servicing Mission

STELLAR CHEMISTRY
Cosmos: Possible Worlds

Is life a game of chance?

Salmon parasite is world's first non-oxygen breathing animal

Hydrogen energy at the root of life

STELLAR CHEMISTRY
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.