. 24/7 Space News .
CARBON WORLDS
Trap, contain and convert
by Staff Writers
Saint Louis MO (SPX) Apr 06, 2018

Basalt rocks like these can trap CO2 gas and convert it into an inert mineral. New research from scientists at Washington University in St. Louis shows the rate at which the process takes place.

When fossil fuels are burned, carbon dioxide (CO2) is emitted. As the gas rises and becomes trapped in the atmosphere, it retains heat as part of a process called the greenhouse effect. The increased temperatures associated with the greenhouse effect can cause melting ice caps, higher sea levels and a loss of natural habitat for plant and animal species.

Environmental scientists trying to mitigate the effects of CO2 have experimented with injecting it deep underground, where it becomes trapped. These trials have mainly taken place in sandstone aquifers, however, the injected CO2 primarily remains present as a bubble that can return to the surface if is there are fracture in the capping formation.

A different approach using basalt flows as injection sites - chiefly at the CarbFix site in Iceland and in Washington state - has yielded dramatic results. Metals in basalt have the ability to transform CO2 into a solid inert mineral in a matter of months. While the new method holds promise, the underground injections can be imprecise, difficult to track and measure.

Now, new research by scientists at Washington University in St. Louis sheds light on what happens underground when CO2 is injected into basalt, illustrating precisely how effective the volcanic rock could be as an abatement agent for CO2 emissions.

The research, led by Daniel Giammar, the Walter E. Browne Professor of Environmental Engineering in the School of Engineering and Applied Science, was conducted in collaboration with researchers at Pacific Northwest National Laboratory and Philip Skemer, associate professor of earth and planetary sciences in Arts and Sciences at Washington University.

"In a field site, you inject the carbon dioxide in, and it's a very open system," Giammar said. "You can't get a good constraint in terms of a capacity estimate. You know you made some carbonate from the CO2, but you don't really know how much. In the lab, we have well-defined boundaries."

To obtain a clearer, quantifiable look at carbon trapping rates in basalt, Giammar collected samples of the rock from Washington state, where researchers previously injected a thousand tons of CO2 gas deep underground into a basalt flow. He placed the rocks in small reactors that resemble slow cookers to simulate underground conditions, and then injected CO2 to test the variables involved in the carbonization process.

"We reacted it at similar pressure and temperature conditions to what they had in the field, except we do all of ours in a small sealed vessel," Giammar said. "So we know how much carbon dioxide went in and we know exactly where all of it went. We can look at the entire rock afterwards and see how much carbonate was formed in that rock. "

The lab kept the basalt in the pressurizers and followed up, using 3-D imaging to analyze their pore spaces at six weeks, 20 weeks and 40 weeks. They were able to watch moment to moment as the CO2 precipitated into mineral, the exact voids within the basalt it filled, and the precise spots in the rock where the carbonization process began.

Once all of the data were collected and analyzed, Giammar and his team predicted 47 kilograms of CO2 can be converted into mineral inside one cubic meter of basalt. This estimate can now be used as a baseline to scale up, quantifying how much CO2 can effectively be converted in entire areas of basalt flow.

"People have done surveys of available basalt flows," Giammar said. "This data will help us determine which ones could actually be receptive to having CO2 injected into them, and then also help us to determine capacity. It's big. It's years and years worth of U.S. CO2 emissions."

Giammar's lab is currently sharing its results with colleagues at the University of Michigan, who will assist in developing a computational model to further help researchers to look for a solid fix for CO2 abatement.

The Washington University researchers have also been invited to take part in the second phase of the U.S. Department of Energy's Carbon Storage Assurance Facility Enterprise, or CarbonSAFE, which investigates new technologies for CO2 abatement.

Wei Xiong, Rachel K. Wells, Jake A. Horner, Herbert T. Schaef, Philip A. Skemer and Daniel E. Giammar. "CO2 Mineral Sequestration in Naturally Porous Basalt." Environmental Science and Technology Letters, February 27, 2018. DOI: 10.1021/acs.eslett.8b00047


Related Links
Washington University in St. Louis
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Once we can capture CO2 emissions, here's what we could do with it
Washington DC (SPX) Apr 05, 2018
The thousands of metric tons of carbon dioxide (CO2) emitted from power plants each year doesn't have to go into the atmosphere. Researchers are optimistic that within the next decade we will be able to affordably capture CO2 waste and convert it into useful molecules for feedstock, biofuels, pharmaceuticals, or renewable fuels. On March 29 in the journal Joule, a team of Canadian and US scientists describe their vision for what we should make with CO2 and how we can make it. "Similar to how a pla ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Fifty years on, Yuri Gagarin's death still shrouded in mystery

Coming down in flames: Fiery endings for spacecraft

A bridge so far: China's controversial megaproject

NASA accepting applications for mission control leaders

CARBON WORLDS
Chinese scientists developing bee-inspired aerospace vehicle

3D printing rocket engines in SPAIN

Funds shortage pulls the brakes on India's crucial space programs

University student projects launch from NASA Wallops

CARBON WORLDS
Elon Musk's vision to colonize Mars updated in New Space

Curiosity rover gets ready for its next adventure

Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

CARBON WORLDS
China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

CARBON WORLDS
Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

SSL to build direct broadcasting satellite for B-SAT

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

CARBON WORLDS
Microsoft shakes up ranks to shoot for the cloud

Finding order in disorder demonstrates a new state of matter

Oracle's big-money case against Google gets new life

Taming chaos: Calculating probability in complex systems

CARBON WORLDS
Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

New study shows what interstellar visitor Oumuamua can teach us

UK team to lead European mission to study new planets

CARBON WORLDS
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.