. | . |
Tiny Probes Hold Big Promise for Future NASA Missions by Staff Writers Moffett Field CA (SPX) Apr 20, 2017
Sometimes to find the best solution to a big problem, you have to start small. A team of NASA engineers has been working on a new type of Thermal Protection System (TPS) for spacecraft that would improve upon the status quo. Having seen success in the laboratory with these new materials, the next step is to test in space. The Conformal Ablative Thermal Protection System, or CA-TPS, will be installed on a small probe flight article provided by Terminal Velocity Aerospace (TVA) and launched on Orbital ATK's seventh contracted commercial resupply services mission for NASA to the International Space Station on April 18. TVA's RED Data2 probe, only slightly larger than a soccer ball, is an unmanned exploratory spacecraft designed to transmit information about its environment. "The purpose of the flight test is to gather supply vehicle break up data and at the same time demonstrate performance of the conformal ablative thermal protection system as the probe-encapsulated with TPS-enters Earth's atmosphere," explained Ethiraj Venkatapathy, project manager for Thermal Protection System Materials with NASA's Space Technology Mission Directorate's (STMD) Game Changing Development (GCD) program. "Thermal protection is a vital element that safeguards a spacecraft from burning up during entry." "Data obtained from flight tests like this one with TVA and NASA, combined with testing at different atmospheric compositions, allows us to build design tools with higher confidence for entry into other planetary atmospheres such as Venus, Mars or Titan," he continued. "Partnering with a small business to get flight data for a developmental material is a very inexpensive way of achieving multiple goals." The TPS Venkatapathy and his team are designing uses newly emerging materials called conformal PICA (C-PICA) and conformal SIRCA (C-SIRCA), short for Phenolic Impregnated Carbon Ablator and Silicone Impregnated Reusable Ceramic Ablator, respectively. The probe is essentially a hard aeroshell covered with the TPS and outfitted with sensors called thermocouples. To measure temperature during atmospheric entry, the thermocouples are embedded within the heat shield's C-PICA and the back shell's C-SIRCA to capture data for understanding how the materials behave in an actual entry environment. With funding through STMD/GCD, NASA's Ames Research Center led the work providing conformal ablative materials and TPS instrumentation installed on Terminal Velocity's probes. Terminal Velocity is also working with NASA's Johnson Space Center with funding from STMD's Small Business Innovation Research program for miniaturizing and improving the data acquisition and transmission system as well as providing support for ISS flight certification. Through the ISS Exploration Flight Project Initiative, Johnson certified three TVA probes for flight. One probe uses the conformal ablative materials, another has the Orion heat-shield material and the third probe uses shuttle tile material for reference. TVA delivered the assembled probes to the Cargo Mission Contract group for this flight. After Orbital ATK's resupply services launch arrives at the ISS, the probes will remain on the cargo ship awaiting their opportunity to go to work. Projected to be released from the ISS in June, once the cargo ship reenters Earth's atmosphere and breaks up, the probes will deploy and then begin capturing data through the thermocouples embedded in the TPS. "The probes are designed to be released from the metallic shell and once they are released, they start to get heated. The thermal response data are collected from the various locations where thermocouples are embedded within the TPS," explains Robin Beck, technical lead for the conformal TPS development. "The probe includes an antenna that allows it to communicate with an Iridium satellite. As the probe descends into the atmosphere and slows to the speed of sound, the data are collected and stored, then transmitted to the Iridium satellite above, which in turn transmits the data to researchers on the ground." Once the flight test's data are collected, TVA's probe is allowed to fall into the ocean and is not recovered; however, these tiny spacecraft will contribute in a very big way to ensure the predictive models developed based on testing in ground facilities are valid and applicable in space. "There are known and unknown risks, but both NASA and TVA are motivated to be successful as the benefits also translate to the larger community that wants to have on-demand access to space," says Venkatapathy. "This technology has the potential to lower the cost of access to space for small payloads while making it attractive for universities and the non-aerospace community who may be novices to flight testing-a challenge in and of itself and not risk free." Because there is no backup for a spacecraft's TPS, it is critical to understand and develop prediction capabilities that allow safe, robust entry system design. A successful flight test at this scale will increase confidence in the conformal ablator and allow mission planners to consider C-PICA and C-SIRCA for use in future programs such as New Frontiers or Orion.
Friedrichshafen, Germany (SPX) Apr 20, 2017 EarthCARE, the Cloud, Aerosol and Radiation Mission of European Space Agency (ESA), met its Cloud Profiling Radar (CPR), the Japanese payload for the mission, for the first time when the Japanese Space Agency (JAXA) handed over the instrument to ESA at Airbus' Satellite Centre in Friedrichshafen (Germany). Airbus is ESA's prime contractor to develop and build the EarthCARE satellite. In th ... read more Related Links NASA's Game Changing Development Program Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |