. 24/7 Space News .
TIME AND SPACE
Throwing an 'axion bomb' into a black hole challenges fundamental law of physics
by Staff Writers
London, UK (SPX) Jun 28, 2021

The team say the axion phenomenon would only occur under extreme conditions that currently cannot be created in a lab, but that future advances in intense laser fields might allow the theory to be tested in a terrestrial environment. (file illustration only)

Singularities such as those at the centre of black holes, where density becomes infinite, are often said to be places where physics 'breaks down'. However, this doesn't mean that 'anything' could happen, and physicists are interested in which laws could break down, and how.

Now, a research team from Imperial College London and the Cockcroft Institute and Lancaster University have proposed a way that singularities could violate the law of conservation of charge. Their theory is published in Annalen der Physik.

Co-author Professor Martin McCall, from the Department of Physics at Imperial, said: "'Physics breaks down at a singularity' is one of the most famous statements in pop-physics. But by showing how this might actually happen, we take aim at one of the most cherished laws of physics: the conservation of charge."

The conservation of charge says that the total electric charge of any isolated system - including the Universe as a whole - never changes. This means that if negatively or positively charged particles move into one area, the same amount of respectively charged particles must move out.

This has been shown at the very smallest scales: when different particles are created or eliminated in experiments such as the Large Hadron Collider, the same amount of negatively and positively charged particles are always produced or destroyed, respectively.

Now, by modifying classic physics equations to include axions, a candidate for dark matter, the team have been able to show that temporary singularities - such as black holes that appear and then later evaporate - could destroy charge when they come to the end of their life.

Axions are hypothetical particles that may explain dark matter - the 'missing' 85 percent of the matter of the Universe. Their predicted properties could form a field that would interact with the kind of fields physicists have known about for centuries - electromagnetic fields, which are described by a set of equations called Maxwell's equations.

Using a branch of mathematics called differential geometry, the team found out how to create or destroy charge, violating the charge conservation of the Universe.

Co-author Jonathan Gratus said: "You can imagine creating an 'axion bomb' that holds charge by combining coupled axion and magnetic fields; and then dropping it into an evaporating black hole. As the construction shrinks and disappears into the singularity, it takes electrical charge with it. It is the combination of a temporary singularity and a newly proposed type of axion field that is crucial to its success."

Co-author Dr Paul Kinsler, from the Department of Physics at Imperial, said: "There are also philosophical implications. Although people often like to say that physics 'breaks down', here we show that although exotic phenomena might occur, what actually happens is nevertheless constrained by the still-working laws of physics around the singularity."

The team say the axion phenomenon would only occur under extreme conditions that currently cannot be created in a lab, but that future advances in intense laser fields might allow the theory to be tested in a terrestrial environment.

Research Report: "Temporary Singularities and Axions: An Analytic Solution that Challenges Charge Conservation"


Related Links
Imperial College London
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How a supermassive black hole originates
Riverside CA (SPX) Jun 18, 2021
Supermassive black holes, or SMBHs, are black holes with masses that are several million to billion times the mass of our sun. The Milky Way hosts an SMBH with mass a few million times the solar mass. Surprisingly, astrophysical observations show that SMBHs already existed when the universe was very young. For example, a billion solar mass black holes are found when the universe was just 6% of its current age, 13.7 billion years. How do these SMBHs in the early universe originate? A team led by a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Thomas and the blue marble

NASA to send mannequins to moon to prepare for crewed missions

Astronauts unfurl 60-foot-long space station solar array

How astronauts can do laundry during space mission

TIME AND SPACE
Student Experiments to Blast Off from NASA Wallops

Virgin Galactic receives approval from FAA for Full Commercial Launch License

Sierra Space provides integration services for nuclear propulsion system for DARPA's Draco Program

China's Long March rocket has world's highest success rate: expert

TIME AND SPACE
Study Looks More Closely at Mars' Underground Water Signals

Insight Mars Lander may die this year due to dust

Study Sheds New Light on Composition at Base of Martian Southern Polar Cap

Video, audio clips shed light on historic Mars mission

TIME AND SPACE
China is using mythology and sci-fi to sell its space program to the world

How does China's urine recycling system work in space

China building new space environment monitoring station

Xi lauds 'new horizon' for humanity in space chat with astronauts

TIME AND SPACE
Virgin Orbit selects new VP of Flight and Launch

Iridium awarded $30M contract by the US Army

Patents help build a global map of new space industry

Benchmark unveils in-space mobility service to unlock OSAM innovations

TIME AND SPACE
Setting gold and platinum standards where few have gone before

Detergent maker helps NASA explore space laundry

A new chapter for space sustainability

NIST method uses radio signals to image hidden and speeding objects

TIME AND SPACE
Collection of starshade research helps advance exoplanet imaging by space telescopes

Are we missing other Earths

Scientists use stellar mass to link exoplanets to planet-forming disks

Unique exoplanet photobombs Cheops study of nearby star system

TIME AND SPACE
Giant comet found in outer solar system by Dark Energy Survey

Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.