. | . |
Sierra Space provides integration services for nuclear propulsion system for DARPA's Draco Program by Staff Writers Louisville CO (SPX) Jun 28, 2021
Sierra Space, the new commercial space subsidiary of global aerospace and national security leader Sierra Nevada Corporation (SNC), will supply the propulsion components and integration services for a Nuclear Thermal Propulsion (NTP) system under a recent contract with General Atomics Electromagnetic Systems (GA-EMS). GA-EMS and Sierra Space will develop and demonstrate an on-orbit NTP system for a Defense Advanced Research Projects Agency (DARPA) program called Demonstration Rocket for Agile Cislunar Operations (DRACO). While the primary mission of DRACO is to enable fast transit time between Earth and the moon, the development of nuclear powered spacecraft propulsion is also expected to open up deep space exploration to humans. "This technology is an essential component of the new space economy," said Tom Crabb, vice president of Sierra Space's Propulsion and Environmental Systems group. "Faster, more fuel efficient propulsion and transportation systems support greater awareness of the cislunar space domain and broader exploration of our solar system. Theoretically we should be able to reach other planets nearly twice as fast with nuclear propulsion, placing less strain on the human body and the environmental systems needed for space travel." NTP uses a nuclear reactor to heat propellant to extreme temperatures before expelling the hot propellant through a nozzle to produce thrust. Compared to conventional space propulsion technologies, NTP offers a high thrust-to-weight ratio around 10,000 times greater than electric propulsion and two-to-five times greater specific propellant efficiency than chemical propulsion. "We are really excited about the team dynamic with GA-EMS," said Dr. Marty Chiaverini, director of Propulsion Systems at Sierra Space. "The GA-EMS reactor is smaller and more technologically advanced and Sierra Space brings extensive experience in developing and fielding mechanical, electrical and thermal conditioning systems that work reliably in space, as well as proven performance with liquid hydrogen-based rocket engines and liquid hydrogen turbomachinery." The NTP design will utilize a liquid hydrogen propellant heated by a nuclear fission reactor to provide two times the amount of energy than the most advanced liquid propellant rocket engine. Over the next 18 months, the team will define the system requirements such as power, weight, interfaces and control, and perform some subsystem risk reduction. Follow-on phases are anticipated to complete the demonstration system, leading to a flight test in 2025.
China's Long March rocket has world's highest success rate: expert Hong Kong (XNA) Jun 25, 2021 The success rate of the launch of China's Long March carrier rockets is the highest in the world, a space scientist said here Thursday. Long Lehao, an academician of the Chinese Academy of Engineering and a chief designer of Long March rockets, said the rocket series have completed 375 launches and stressed that the accuracy of putting satellites into orbit and the number of launch times are all first-class in the world. The Long March rockets are based on independent innovation, have reache ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |