. 24/7 Space News .
TIME AND SPACE
The earliest supermassive black hole and quasar in the universe
by Staff Writers
Maunakea HI (SPX) Jan 13, 2021

stock image only

The most distant quasar known has been discovered. The quasar, seen just 670 million years after the Big Bang, is 1000 times more luminous than the Milky Way, and is powered by the earliest known supermassive black hole, which weighs in at more than 1.6 billion times the mass of the Sun.

Seen more than 13 billion years ago, this fully formed distant quasar is also the earliest yet discovered, providing astronomers with insight into the formation of massive galaxies in the early universe. The result was released at the January 2021 meeting of the American Astronomical Society (AAS).

Quasars, which are powered by the feeding frenzies of colossal supermassive black holes, are the most energetic objects in the universe. They occur when gas in the superheated accretion disk around a supermassive black hole is inexorably drawn inwards, radiating light across the electromagnetic spectrum. The amount of energy emitted by quasars is enormous, with the most massive examples easily outshining entire galaxies.

At an AAS press conference, January 12, 2021, an international team of astronomers announced the discovery of J0313-1806, the most distant quasar known to date with a redshift of z = 7.64.

The study, which includes data from several Maunakea Observatories in Hawaii - UKIRT, W. M. Keck Observatory, and the international Gemini Observatory, a Program of NSF's NOIRLab - as well as Pan-STARRS1, a survey telescope on Maui operated by the University of Hawaii Institute for Astronomy, has been accepted in The Astrophysical Journal Letters and is available in pre-print format on arXiv.org.

"The most distant quasars are crucial for understanding how the earliest black holes formed and for understanding cosmic reionization - the last major phase transition of our universe," said Xiaohui Fan, study co-author and Regents Professor of Astronomy at the University of Arizona.

The presence of such a massive black hole so early in the universe's history challenges theories of black hole formation.

"Black holes created by the very first massive stars could not have grown this large in only a few hundred million years," says Feige Wang, NASA Hubble fellow at the University of Arizona and lead author of the research paper.

The observations that led to this discovery were made using a variety of observatories around the world, including several world-class telescopes in Hawaii.

Data from Pan-STARRS1 and the UKIRT Hemisphere Survey helped to first identify J0313-1806. Once the team confirmed its identity as a quasar, they obtained high-quality spectra from Keck Observatory and Gemini North to measure the mass of the central supermassive black hole.

"Measurement of spectral lines that originate from gas surrounding the quasar's accretion disk allows us to determine the black hole's mass and study how its rapid growth influences its environment. For such distant quasars, the most important spectral lines are redshifted to near-infrared wavelengths and Keck's NIRES spectrograph is an excellent instrument for these observations," said co-author Aaron Barth, a professor of Physics and Astronomy at the University of California, Irvine.

"Observing infrared light requires low temperatures. The near-freezing climate prevailing at the sky-scraping summit of Maunakea (13,796 ft or 4205 m) make it one of the only sites on Earth with instruments sensitive enough to observe such red wavelengths," said Joe Hennawi, a professor at UC Santa Barbara who helped execute the observations with the Keck/NIRES spectrograph.

In addition to weighing the monster black hole, the Keck Observatory and Gemini North observations uncovered an extremely fast outflow emanating from the quasar in the form of a high-velocity wind traveling at 20% of the speed of light.

"The energy released by such an extreme high-velocity outflow is large enough to impact the star formation in the entire quasar host galaxy," said co-author Jinyi Yang, Peter A. Strittmatter postdoctoral fellow of Steward Observatory at the University of Arizona.

This is the earliest known example of a quasar sculpting the growth of its host galaxy, making J0313-1806 a promising target for future observations.

The galaxy hosting J0313-1806's is undergoing a spurt of star formation, producing new stars 200 times faster than the Milky Way. The combination of this intense star formation, the luminous quasar, and the high-velocity outflow make J0313-1806 and its host galaxy a promising natural laboratory for understanding the growth of supermassive black holes and their host galaxies in the early universe.

"This would be a great target to investigate the formation of the earliest supermassive black holes," concluded Wang. "We also hope to learn more about the effect of quasar outflows on their host galaxy - as well as to learn how the most massive galaxies formed in the early universe."

Research Report: "A Luminous Quasar at Redshift 7.642"


Related Links
Keck Observatory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
On the Hunt for a Missing Giant Black Hole
Huntsville AL (SPX) Dec 22, 2020
The mystery surrounding the whereabouts of a supermassive black hole has deepened. Despite searching with NASA's Chandra X-ray Observatory and Hubble Space Telescope, astronomers have no evidence that a distant black hole estimated to weigh between 3 billion and 100 billion times the mass of the Sun is anywhere to be found. This missing black hole should be in the enormous galaxy in the center of the galaxy cluster Abell 2261, which is located about 2.7 billion light years from Earth. This composi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cultivating plant growth in space

NASA Extends Exploration for Two Planetary Science Missions

NASA prepares Orion simulator for lunar mission training

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

TIME AND SPACE
SpaceX Dragon capsule to make first of its kind science splashdown

SpaceX launches Turkish satellite from Florida

SpaceX, L3Harris pursue hypersonic missile defense system

Rolls-Royce and UK Space Agency launch study into nuclear-powered space exploration

TIME AND SPACE
Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

Tianwen 1 robotic probe to enter Mars orbit in Feb

TIME AND SPACE
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

TIME AND SPACE
NASA, FAA Partnership Bolsters American Commercial Space Activities

New funding for innovative space tech to help solve problems on Earth

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

TIME AND SPACE
Physicists observe competition between magnetic orders

Autonomous in-space assembly and manufacturing moves closer to reality

Researchers develop new one-step process for creating self-assembled metamaterials

Researchers acquire 3D images with LED room lighting and a smartphone

TIME AND SPACE
A rocky planet around one of our galaxy's oldest stars

Astronomers find evidence for planets shrinking over billions of years

Astronomers measure enormous planet lurking far from its star

A Tale of Planetary Resurrection

TIME AND SPACE
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.