. 24/7 Space News .
EXO WORLDS
A Tale of Planetary Resurrection
by Staff Writers
Pasadena CA (SPX) Jan 12, 2021

illustration only

Years after its detection, astronomers have learned that a planet called KOI-5Ab orbits in a triple-star system with a skewed configuration. Shortly after NASA's Kepler mission began operations back in 2009, it identified what was thought to be a planet about the size of Neptune. Called KOI-5Ab, the planet, which was the second new planet candidate to be found by the mission, was ultimately forgotten as Kepler racked up more and more planet discoveries. By the end of its mission in 2018, Kepler had discovered a whopping 2,394 exoplanets, or planets orbiting stars beyond our sun, and an additional 2,366 exoplanet candidates, including KOI-5Ab.

Now, David Ciardi, chief scientist of NASA's Exoplanet Science Institute (NExScI), located at Caltech's IPAC, says he has "resurrected KOI-5Ab from the dead," thanks to new observations from NASA's TESS (Transiting Exoplanet Survey Satellite) mission.

"KOI-5Ab fell off the table and was forgotten," says Ciardi, who presented the findings at a virtual meeting of the American Astronomical Society (AAS). By 2014, Ciardi and other researchers had used the W. M. Keck Observatory in Hawaii, Caltech's Palomar Observatory near San Diego, and Gemini North in Hawaii to show that the star circled by KOI-5Ab is one member of a triple-star system called KOI-5. But they were not sure if the KOI-5 system actually hosted a planet or if they were seeing an erroneous signal from one of the two other stars.

Then, in 2018, TESS came along. Like Kepler, TESS looks for the blinking of starlight that comes when a planet crosses in front of, or transits, a star. TESS observed a portion of Kepler's field of view, including the KOI-5 system. Sure enough, TESS also identified KOI-5Ab as a candidate planet (though TESS calls it TOI-1241b). TESS, like Kepler, found that the planet orbited its star roughly every five days. But at that point, it was still not clear if the planet was real.

"I thought to myself, 'I remember this target,'" says Ciardi, after seeing the TESS data. He then went back and reanalyzed all the data, including that from the California Planet Search, led by Caltech professor of astronomy Andrew Howard. The California Planet Search uses ground-based telescopes, including the Keck Observatory, to search for the telltale wobble in a star that occurs when a planet circles around it and exerts a gravitational tug.

"If it weren't for TESS looking at the planet again, I would never have gone back and done all this detective work," says Ciardi.

Jessie Dotson, the Kepler/K2 project scientist at NASA Ames Research Center, says, "This research emphasizes the importance of NASA's full fleet of space telescopes and their synergy with ground-based systems. Discoveries like this one can be a long haul."

Together, the data from the space- and ground-based telescopes helped confirm that KOI-5Ab is a planet. KOI-5Ab is about one half the mass of Saturn and orbits a star (star A) with a relatively close companion (star B). Star A and star B orbit each other every 30 years. A third gravitationally bound star (star C) orbits stars A and B every 400 years.

The combined data set also reveals that the orbital plane of the planet is not aligned with the orbital plane of the second inner star (star B) as might be expected if the stars and planet all formed from the same disk of swirling material. Triple-star systems, which make up about 10 percent of all star systems, are thought to form when three stars are born together out of the same disk of gas and dust.

Astronomers are not sure what caused the misalignment of KOI-5Ab but speculate that the second star gravitationally kicked the planet during its development, skewing its orbit and causing it to migrate inward.

This is not the first evidence for planets in double- and triple-star systems. One striking case involves the triple-star system GW Orionis, in which a planet-forming disk had been torn into distinct misaligned rings, where planets may be forming. Yet despite hundreds of discoveries of multiple-star system planets, the frequency of planet formation in these systems is lower than that of single-star systems. This could be due to an observational bias (single-star planets are easier to detect) or because planet formation is in fact less common in multiple-star systems.

Future instruments, such as the Palomar Radial Velocity Instrument (PARVI) at the 200-inch Hale Telescope at Palomar and the Keck Planet Finder at Keck, will open up new avenues for better answering these questions.

"Stellar companions may partially quench the process of planet formation," says Ciardi. "We still have a lot of questions about how and when planets can form in multiple-star systems and how their properties compare to planets in single-star systems. By studying the KOI-5 system in more detail, perhaps we can gain insight into how the universe makes planets."


Related Links
Caltech
Kepler mission
TESS (Transiting Exoplanet Survey Satellite) mission
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Astronomers detect possible radio emission from exoplanet
Ithaca NY (SPX) Dec 17, 2020
By monitoring the cosmos with a radio telescope array, a Cornell University-led international team of scientists has detected radio bursts emanating from the constellation Bootes. The signal could be the first radio emission collected from a planet beyond our solar system. The team, led by Cornell postdoctoral researcher Jake D. Turner, Philippe Zarka of the Observatoire de Paris - Paris Sciences et Lettres University and Jean-Mathias Griessmeier of the Universite d'Orleans published their finding ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA Extends Exploration for Two Planetary Science Missions

NASA prepares Orion simulator for lunar mission training

European Gateway module to be built in France as Thomas Pesquet readies for second spaceflight

NASA explores upper limits of global navigation systems for Artemis

EXO WORLDS
SpaceX Dragon capsule to make first of its kind science splashdown

SpaceX launches Turkish satellite from Florida

SpaceX, L3Harris pursue hypersonic missile defense system

SLS proceeding with Green Run Hot Fire

EXO WORLDS
Frosty scenes in martian summer

Seven things to know about the NASA rover about to land on Mars

China Focus: 400 mln km within 163 days, China's Mars probe heads for red planet

Tianwen 1 robotic probe to enter Mars orbit in Feb

EXO WORLDS
Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

EXO WORLDS
NASA, FAA Partnership Bolsters American Commercial Space Activities

Orbit Logic Leverages Blockchain for Constellation Communication over Dynamic Networks

Airbus signs multi-satellite contract with Intelsat for OneSat flexible satellites

New funding for innovative space tech to help solve problems on Earth

EXO WORLDS
Physicists observe competition between magnetic orders

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

A good GRASP on the New Year

Autonomous in-space assembly and manufacturing moves closer to reality

EXO WORLDS
Discovery boosts theory that life on Earth arose from RNA-DNA mix

Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

EXO WORLDS
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.