. 24/7 Space News .
STELLAR CHEMISTRY
The disc of the Milky Way is bigger than we thought
by Staff Writers
La Laguna, Spain (SPX) Jun 08, 2018

The coloured region is the previously known Galactic disk. The present work has extended its limits much farther away: there is a probability 99.7 percent or 95.4 percent respectively that there are disk stars in the regions outside the dashed/dotted circles. Yellow dot is the position of the Sun. Background Milky Way image from 'A Roadmap to the Milky Way'.

Spiral galaxies such as the Milky Way have discs which are really thin, in which the major fraction of their stars are found. These discs are limited in size, so that beyond certain radius there are very few stars left.

In our Galaxy we were not aware that there are stars in the disc at distances from the centre more than twice that of the Sun. This means that our own star was apparently orbiting at about half the galactic radius. However now we know that there are stars quite a bit further out, at more than three times this distance, and it is probable that some stars are at more than four times the distance of the Sun from the Galactic centre.

"The disc of our Galaxy is huge, around 200 thousand light years in diameter" says Martin Lopez-Corredoira, a researcher at the IAC and the first author of the article recently published in the journal Astronomy and Astrophysics and whose authors come from both the IAC and the NAOC.

In broad terms we can think of galaxies like the Milky Way as being composed of a rotating disc, which includes spiral arms, and a halo, spherical in shape, which surrounds it. This piece of research has compared the abundances of metals (heavy elements) in the stars of the Galactic plane with those of the halo, to find that there is a mixture of disc and halo stars out to the large distances indicated.

The researchers came to these conclusions after make a statistical analysis of survey date from APOGEE and LAMOST, two projects which obtain spectra of stars to extract information about their velocities and their chemical compositions.

"Using the metallicities of the stars in the catalogues from the high quality spectral atlases of APOGEE and LAMOST, and with the distances at which the objects are situated, we have shown that there is an appreciable fraction of stars with higher metallicity, characteristic of disc stars, further out than the previously assumed limit on the radius of the Galaxy disc" explains Carlos Allende, a researcher at the IAC and a co-author of this publication.

Francisco Garzon, an IAC researcher who is another of the authors of the article explains that "We have not used models, which sometimes give us only the answers for which they were designed, but we have employed only the statistics of a large number of objects. The results are therefore free from a priori assumptions, apart from a few basic and well established ones".

Research paper


Related Links
Instituto de Astrofisica de Canarias (IAC)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NASA Selects Mission to Study Solar Wind Boundary of Outer Solar System
Washington DC (SPX) Jun 04, 2018
NASA has selected a science mission planned for launch in 2024 that will sample, analyze, and map particles streaming to Earth from the edges of interstellar space. The Interstellar Mapping and Acceleration Probe (IMAP) mission will help researchers better understand the boundary of the heliosphere, a sort of magnetic bubble surrounding and protecting our solar system. This region is where the constant flow of particles from our Sun, called the solar wind, collides with material from the res ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
New crew blasts off for ISS

New crew blasts off for ISS

NASA Narrows Scope for Proposed Astrophysics Missions

NanoRacks Complete Barrios Protein Crystal Growth Operations on Space Station

STELLAR CHEMISTRY
Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Watch live: SpaceX to launch SES-12 communications satellite

STELLAR CHEMISTRY
Science Team Continues to Improve Opportunity's Use of the Robotic Arm

New data-mining technique offers most-vivid picture of Martian mineralogy

More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

STELLAR CHEMISTRY
China confirms reception of data from Gaofen-6 satellite

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

STELLAR CHEMISTRY
Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

The European Space Agency welcomes European Commission's proposal on space activities

Spain's first astronaut named science minister

Airbus-built SES-12 dual-mission satellite successfully launched

STELLAR CHEMISTRY
Supercomputer Astronomy: The Next Generation

Space Traffic Management - Oversight, Licensing And Enforcement

Firing up a new alloy

Large-scale and sustainable 3D printing with the most ubiquitous natural material

STELLAR CHEMISTRY
Searching for Potential Life-Hosting Planets Beyond Earth

Planets Can Easily Exist in Triple Star Systems

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

How microbes survive clean rooms and contaminate spacecraft

STELLAR CHEMISTRY
NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.