24/7 Space News
STELLAR CHEMISTRY
Carbon's cosmic 'conveyer belt' across time and space
In this artistic rendering, light from a distant quasar passes through the halo-like circumgalactic medium of a galaxy on its way to Earth, where it is measured by Hubble's Cosmic Origins Spectrograph to determine the composition of the halo.
Carbon's cosmic 'conveyer belt' across time and space
by James Urton for UW News
Seattle WA (SPX) Jan 06, 2025

Life on Earth could not exist without carbon. But carbon itself could not exist without stars. Nearly all elements except hydrogen and helium - including carbon, oxygen and iron - only exist because they were forged in stellar furnaces and later flung into the cosmos when their stars died. In an ultimate act of galactic recycling, planets like ours are formed by incorporating these star-built atoms into their makeup, be it the iron in Earth's core, the oxygen in its atmosphere or the carbon in the bodies of Earthlings.

A team of scientists based in the U.S. and Canada recently confirmed that carbon and other star-formed atoms don't just drift idly through space until they are dragooned for new uses. For galaxies like ours, which are still actively forming new stars, these atoms take a circuitous journey. They circle their galaxy of origin on giant currents that extend into intergalactic space. These currents - known as the circumgalactic medium - resemble giant conveyer belts that push material out and draw it back into the galactic interior, where gravity and other forces can assemble these raw materials into planets, moons, asteroids, comets and even new stars.

"Think of the circumgalactic medium as a giant train station: It is constantly pushing material out and pulling it back in," said team member Samantha Garza, a University of Washington doctoral candidate. "The heavy elements that stars make get pushed out of their host galaxy and into the circumgalactic medium through their explosive supernovae deaths, where they can eventually get pulled back in and continue the cycle of star and planet formation."

Garza is lead author on a paper describing these findings that was published Dec. 27 in the Astrophysical Journal Letters.

"The implications for galaxy evolution, and for the nature of the reservoir of carbon available to galaxies for forming new stars, are exciting," said co-author Jessica Werk, UW professor and chair of the Department of Astronomy. "The same carbon in our bodies most likely spent a significant amount of time outside of the galaxy!"

In 2011, a team of scientists for the first time confirmed the long-held theory that star-forming galaxies like ours are surrounded by a circumgalactic medium - and that this large, circulating cloud of material includes hot gases enriched in oxygen. Garza, Werk and their colleagues have discovered that the circumgalactic medium of star-forming galaxies also circulates lower-temperature material like carbon.

"We can now confirm that the circumgalactic medium acts like a giant reservoir for both carbon and oxygen," said Garza. "And, at least in star-forming galaxies, we suggest that this material then falls back onto the galaxy to continue the recycling process."

Studying the circumgalactic medium could help scientists understand how this recycling process subsides, which will happen eventually for all galaxies - even ours. One theory is that a slowing or breakdown of the circumgalactic medium's contribution to the recycling process may explain why a galaxy's stellar populations decline over long periods of time.

"If you can keep the cycle going - pushing material out and pulling it back in - then theoretically you have enough fuel to keep star formation going," said Garza.

For this study, the researchers used the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectrograph measured how light from nine distant quasars - ultra-bright sources of light in the cosmos - is affected by the circumgalactic medium of 11 star-forming galaxies. The Hubble readings indicated that some of the light from the quasars was being absorbed by a specific component in the circumgalactic medium: carbon, and lots of it. In some cases, they detected carbon extending out almost 400,000 light years - or four times the diameter of our own galaxy - into intergalactic space.

Future research is needed to quantify the full extent of the other elements that make up the circumgalactic medium and to further compare how their compositions differ between galaxies that are still making large amounts of stars and galaxies that have largely ceased star formation. Those answers could illuminate not just when galaxies like ours transition into stellar deserts, but why.

Research Report:The CIViL Survey: The Discovery of a C iv Dichotomy in the Circumgalactic Medium of L Galaxies

Related Links
University of Washington
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Researchers identify neutron stars as sources of fast radio bursts
Los Angeles CA (SPX) Jan 09, 2025
An international team of researchers, led by McGill University scientists, has confirmed a key link between fast radio bursts (FRBs) and neutron stars - extremely dense remnants of massive stars that explode as supernovae. This milestone discovery, derived from a detailed analysis of a single FRB, sheds light on the enigmatic radio flashes that have puzzled astronomers for over a decade. "This result reaffirms long-held suspicions about the connection between FRBs and neutron stars," said Ryan Mck ... read more

STELLAR CHEMISTRY
Spacewalk Preps, Biology Research Wrap Up Week Aboard Station

Hexagon to acquire Septentrio driving advancements in mission-critical navigation and autonomy

ISS crew prepares for spacewalks and advances scientific research

NSF and ISS Lab allocate funding for space research projects

STELLAR CHEMISTRY
Starfighters Accelerates Efforts in Space Launch Development

Stratolaunch Awarded 247M by Missile Defense Agency for Hypersonic Flight Testing

China's Smart Dragon 3 rocket launches satellites from sea

Westinghouse Awarded NASA DOE Contract for Space Microreactor Development

STELLAR CHEMISTRY
Samples from Mars to reveal planet's evolutionary secrets

NASA eyes SpaceX, Blue Origin to cut Mars rock retrieval costs

NASA to evaluate dual strategies for bringing Mars samples back to Earth

January's Night Sky Notes: The Red Planet

STELLAR CHEMISTRY
Scientists plan to create the first fluttering flag on the moon

China's human spaceflight program achieves key milestones in 2024

China's space journey continues apace

Shenzhou XIX crew completes successful spacewalk outside Tiangong station

STELLAR CHEMISTRY
ispace-EUROPE secures historic authorization for Lunar resource mission

The Space Economy to Reach $944 Billion by 2033

AST SpaceMobile secures long-term spectrum access to advance space-based cellular services

Elsayed Talaat Appointed President and CEO of USRA

STELLAR CHEMISTRY
A Sustainable Development Goal for Earth's Orbit

York Space Systems Achieves First LEO to LEO Laser Link Between Vendors

Monitoring space traffic

Debris falling from the sky: more often, more risk

STELLAR CHEMISTRY
SETI Forward celebrates the future of cosmic exploration

Dormancy as a survival strategy for life's origins

An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

STELLAR CHEMISTRY
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Capture theory unveils how Pluto and Charon formed as a binary system

Citizen scientists help decipher Jupiter's cloud composition

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.