24/7 Space News
TECH SPACE
The ShAPE of buildings to come: Scrap aluminum transforms recycling life cycle
Post-consumer recycled aluminum scrap transforms into new building materials through Shear Assisted Processing and Extrusion (ShAPE) a patented manufacturing process. Photo: Andrea Starr | Pacific Northwest National Laboratory. See video here
ADVERTISEMENT
     
The ShAPE of buildings to come: Scrap aluminum transforms recycling life cycle
by Karyn Hede for PNNL News
Richland WA (SPX) Feb 02, 2024

The circular economy just closed the loop on scrap aluminum, thanks to a new patent-pending technology developed at the Department of Energy's Pacific Northwest National Laboratory. That twisted aluminum mesh, those banged up bicycle frames, and the used car parts now languishing in junk yards could gain new life as building structures such as door and window frames, facades, lighting, decorative features and a myriad of other uses-all while conserving nearly all the energy required to manufacture new aluminum products.

It's no secret that strong, yet light-weight aluminum parts are being deployed more often as building materials. But there's a high energy and greenhouse gas emissions cost to mining and refining aluminum. According to the International Aluminum Institute, the production of 1 ton of primary aluminum emits an average of 17 tons of carbon dioxide into the atmosphere.

Now, rather than processing mined aluminum, rigorous laboratory testing has shown that PNNL's Shear Assisted Processing and Extrusion Process (ShAPE) can transform 100 percent post-consumer scrap aluminum into usable extrusions that meet or exceed stringent ASTM standards for strength and flexibility for common building-grade alloys 6061 and 6063. The ShAPE technology unlocks the possibility of creating circularity in aluminum scrap markets, thus reducing dependency on imported primary aluminum and the massive amounts of energy associated with its production.

"With approximately 55 percent of the global aluminum extrusion market servicing the building and construction industry, the evolution of ShAPE to include aluminum recycling for building structures is an enormous opportunity for decarbonizing the built environment," said PNNL Chief Scientist Scott Whalen, who led this research. "We are finding that the unique microstructures within the metal are more tolerant to impurities than previously thought. This enables us to reach even deeper into the aluminum scrap market while maintaining material performance."

The latest round of patented ShAPE technology prompted technology entrepreneur Eric Donsky to form a start-up manufacturing company to scale a ShAPE-based process into vertically integrated manufacturing facilities that upcycle scrap aluminum into a portfolio of low-carbon extruded parts initially targeting the building and construction industry.

Atomic13 has signed an exclusive agreement with PNNL to commercialize the technology in certain fields of use and aims to move rapidly to create a myriad of custom-extruded aluminum parts for the building and consumer product industries, relying entirely on post-consumer aluminum scrap. The energy savings is expected to assist builders aiming to meet or exceed Leadership in Energy and Environmental Design standards for energy-efficient buildings, among other benefits.

"The ShAPE technology is an amazing opportunity for U.S. manufacturing and the build-out of our critical infrastructure," said Atomic13 Founder Eric Donsky.

"We believe there is tremendous environmental and commercial value to building circularity in the aluminum extrusion industry while helping the building and construction industry significantly reduce the embodied carbon of their products. ShAPE technology enables companies like Atomic13 to produce aluminum extrusions made from 100 percent post-consumer scrap with 90% lower carbon. At the same time, the low feedstock costs result in lower costs for consumers. We look forward to continuing to work with PNNL engineers to advance this promising technology."

Aluminum extrusions are already a mainstay of the building industry. What's different about the ShAPE manufacturing process is that the scrap aluminum bricks or rod-shaped billets are deformed using heat generated by high shear forces to pulverize impurities in scrap aluminum into tiny particles and uniformly disperse them within the aluminum microstructure.

This dispersion eliminates, for example, microscopic iron clumps that can generate microfractures in recycled aluminum products manufactured using conventional methods. ShAPE aluminum extrusion offers massive energy savings by eliminating the need to dilute impurities found in recycled aluminum with 25 percent to 40 percent newly mined aluminum before processing.

The PNNL team evaluated the mechanical properties of rods, tubes and irregular hollow, multichannel trapezoids under mechanical stress. The team tested 540 unique conditions products, made from post-consumer scrap briquettes, some with high iron content (0.2 to 0.34 percent iron). All performed at or above ASTM standards for yield strength and ultimate tensile strength.

Creating new demand in the scrap aluminum market
According to the International Aluminum Organization, producing 1 metric ton of molten aluminum requires 16.6 megawatt hours of electricity. Globally, the aluminum industry produced over 69,000 metric tons of primary, mined aluminum in 2022. Half of that came from China, which uses coal-fired power to generate the 16.6-megawatt hours of electricity and 17 tons of carbon dioxide emissions per ton of aluminum produced.

"The ShAPE manufacturing process conserves energy and eliminates greenhouse gas emissions on several fronts," said Whalen. "First, we avoid the need to add primary aluminum. Then, we eliminate the need for what is called homogenization of the billet material, a 6- to 24-hour heat treatment near 500 C prior to extrusion."

In addition, eliminating the need to add newly mined aluminum greatly reduces the manufacturing cost, opening the door to a larger market for what has been considered lower grade "twitch" aluminum scrap. This kind of scrap is composed of an ever-changing mix of manufacturing scrap and post-consumer goods such as the ubiquitous beverage cans, but also all manner of used house siding, window and door frames, step ladders and a myriad of used equipment of all sorts.

"Creating a circular market that provides a value proposition for this twitch scrap opens up the possibility for new industrial uses in the building industry, among sporting goods manufacturers, auto parts, and framing for emerging industries such as solar panel manufacturing," said Donsky.

Atomic13 is currently in the design phase of its first commercial manufacturing line with a leading equipment company in the extrusion industry and is also evaluating site locations in the Midwest and Southeast. The company is in discussions with builders and construction companies interested in sustainability and the decarbonization of building materials and plans to accept orders by early 2025.

Related Links
PNNL Shear Assisted Processing and Extrusion Process (ShAPE)
Lightweight Materials Consortium (LightMAT)
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Turning Cooking Oil By-Products and CO2 into Valuable Industrial Additives
Liege, Belgium (SPX) Feb 02, 2024
In a notable stride towards sustainable chemical manufacturing, researchers at the Center for Integrated Technology and Organic Synthesis (CiTOS) of the University of Liege have unveiled a novel method for producing glycerol carbonate, a high-value biosourced industrial additive. This study, conducted in collaboration with the Center for Studies and Research on Macromolecules (CERM), demonstrates the potential for continuous industrial production of glycerol carbonate using CO2 and a by-product of ... read more

ADVERTISEMENT
ADVERTISEMENT
TECH SPACE
China warns US tech curbs will 'come back to bite them'

Virgin Galactic Marks 11th Spaceflight with Full Passenger Manifest

NASA's latest experiments aboard ISS aim to boost life in space

Northrop Grumman marks 20th ISS resupply mission with Cygnus launch

TECH SPACE
MITRE and MDC team up to advance at Midland Spaceport

Starlab Partners with SpaceX to Launch Private Space Laboratory into Orbit

Sidus Space's 3D Hybrid satellite 'LizzieSat' ready for launch

Rocket Lab starts busy year with successful booster recovery

TECH SPACE
As Ingenuity's mission ends a news era in flight on other planets and moons begins

After Three Years on Mars, NASA's Ingenuity Helicopter Mission Ends

Confirmation of ancient lake on Mars builds excitement for Perseverance rover's samples

NASA helicopter's mission ends after three years on Mars

TECH SPACE
BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

TECH SPACE
Into the Starfield

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

Rocket Lab Launches $275 Million Convertible Note Offering for 2029 Maturity

SpaceFund Welcomes Business Veteran Leo Rodriguez to Board

TECH SPACE
SmallCAT Laser Terminal Demonstrates Effective Space-Earth Communication in LEO

New rule for catalysts' design is as easy as counting to ten

The ShAPE of buildings to come: Scrap aluminum transforms recycling life cycle

Turning Cooking Oil By-Products and CO2 into Valuable Industrial Additives

TECH SPACE
UC Irvine-led team unravels mysteries of planet formation and evolution in distant solar system

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

TESS finds Super-Earth in habitable zone around nearby red dwarf

New Insights into Earth's Earliest Life Forms Discovered in Palaeoarchaean Rock Samples

TECH SPACE
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.