24/7 Space News
MOON DAILY
The Mystery of the Glass Substance in the Chang'e-5 Lunar Soil
Schematic diagram of the different origins of various glassy substances on the lunar surface.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
The Mystery of the Glass Substance in the Chang'e-5 Lunar Soil
by Staff Writers
Beijing, China (SPX) May 07, 2023

Glass is typically associated with floor-to-ceiling windows, colorful crafts, and electronic screens. However, it is not only a crucial man-made material but also a naturally occurring substance found in nature. The moon's surface, despite being desolate and barren, contains abundant glassy substances formed by volcanic eruptions, geological movements, and meteorite impacts. Lunar glass can remain stable for hundreds of millions of years, preserving ancient lunar materials and environmental information, similar to how amber does on Earth.

China's Chang'e-5 mission marked the country's first extraterrestrial sampling, successfully collecting and returning the youngest and highest latitude lunar soil samples to date. These samples provide insight into the moon's origin, evolution, surface, and space environment, while promoting in-situ utilization of lunar resources. This mission has also supplied valuable samples for studying extraterrestrial glass substances.

A team led by Academician Wang Weihua from the Institute of Physics of the Chinese Academy of Sciences recently conducted systematic material science research on the Chang'e-5 lunar soil samples, focusing on glass. Researchers Bai Haiyang, Shen Laiquan, Zhao Rui, Chang Chao, and Xiao Dongdong analyzed the morphology, composition, microstructure, and formation mechanism of glass/amorphous materials in lunar soil.

They discovered various types and origins of lunar glass materials, constructing a classification catalog of lunar soil glass/amorphous phases. Their research on lunar soil glass has laid a foundation for understanding the moon's material composition and space-time evolution and provided a scientific basis for in-situ processing and manufacturing of glass materials and devices based on lunar soil resources.

The research team discovered that various forms of glass on the moon's surface originate from multiple transformation paths involving solids, liquids, and gases. Frequent meteorite and micrometeorite impacts on the lunar surface cause minerals to melt and rapidly cool, producing a range of glass substances. These include rotating-shaped glass beads (spherical, ellipsoidal, dumbbell-shaped), cement with pore structures, and fluid forms of sputtering.

These impact-originated glass materials record multi-scale impact events on the lunar surface, ranging from kilometers to nanometers. The morphology of the solidified glass depends on the viscosity of the glass-forming liquid, which is dominated by the impact temperature and can help determine the intensity of meteorite impacts. Additionally, a nanoscale amorphous layer exists on the surface of lunar soil particles. Detailed structural and compositional analyses reveal two distinct origins for these nanoamorphous layers: radiation damage induced by solar wind particle injection, which converts a crystalline solid into a glassy state; and thermal evaporation deposition, where vapor deposition forms an amorphous film on the surface of mineral particles.

The widespread vapor-deposited amorphous layer identified in this study resolves the current debate about the presence of a sedimentary layer on the Chang'e-5 lunar soil grains' surface. Glass materials originating from melt cooling, vapor deposition, and ion irradiation reveal the interaction between the lunar surface and space environment, significantly contributing to understanding the formation and evolution of lunar regolith.

It's important to note that the glass material in the Chang'e-5 lunar soil exhibits characteristics significantly different from those of the Apollo lunar soil. Firstly, the research team reported naturally occurring glass fibers in the Chang'e-5 lunar soil for the first time. These ultra-high aspect ratio glass fibers are formed by thermoforming a viscous liquid during impact, similar to hot drawing amorphous filaments in a laboratory. Compared to low aspect ratio glass beads, liquid-forming glass fibers have higher viscosity, meaning the corresponding impact temperature and rate are lower. This reflects milder micro-impact events on the lunar surface.

These natural glass fibers demonstrate that lunar soil possesses a strong glass-forming ability and excellent processing and molding characteristics. This finding confirms the feasibility of using lunar soil to process and produce glass building materials on the moon's surface, providing crucial support for constructing future lunar bases.

Moreover, the research team discovered that the nano-deposited amorphous layer on the Chang'e-5 lunar soil surface is much thinner than that of the Apollo lunar soil samples. It contains almost no refractory elements and nano-metal iron particles, being composed only of silicon (Si) and oxygen (O). This indicates that the impact intensity of micrometeorites that vaporized lunar surface material was lower, resulting in less hot steam produced per impact event and temperatures low enough to prevent gasification of other refractory elements.

These characteristics reveal a generally more benign impact environment on the lunar surface within the Chang'e-5 landing zone. This finding not only successfully explains the contradiction between the high degree of weathering and low glass content in the Chang'e-5 lunar soil, but also holds guiding significance for research on scientific issues such as space weathering, spectral characteristics, and water content on the lunar surface in the landing area.

Editor's Note: This report is a machine translation of a CNSA report that has been further processed by ChatGPT4. See the original CNSA report that has additional imagery.

Related Links
Lunar Exploration and Space Program
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MOON DAILY
The Moon's heart revealed for the first time
Paris, France (SPX) May 05, 2023
Half a century after Apollo 11 initiated the first lunar surveys, a collaborative team of scientists from CNRS, University of the Cote d'Azur, Cote d'Azur Observatory, Sorbonne University, and Paris Observatory-PSL has unveiled a previously unknown aspect of the Moon's internal structure: a solid core akin to Earth's. Alongside this groundbreaking discovery, the researchers also provide evidence explaining the presence of iron-rich materials within the lunar crust. Their findings were published in Natur ... read more

ADVERTISEMENT
ADVERTISEMENT
MOON DAILY
Virgin to launch commercial spaceflights in June

SpaceX set to launch Vast's commercial space station and inaugural human spaceflight mission

NASA launches SBIR Ignite Catalyst Program for founders and entrepreneurs

Prep in the pool for Europe's next astronauts

MOON DAILY
Wenchang Spacecraft Launch Site can launch new-generation rockets

New standard will aid in development of spaceport descriptions

China's reusable experimental spacecraft successfully lands

Rocket Lab to launch small satellite swarm for NASA

MOON DAILY
Ubajara drill site gets green light: Sols 3823-3824

Check And Double Check: Sols 3821-3822

These sounds are out of this world

Chasms on the flanks of a Martian volcano

MOON DAILY
Tianzhou-5 cargo craft separates from China's space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou 6 docks with Tiangong space station

Final frontier is no longer alien

MOON DAILY
How NASA's work led to commercial spaceflight revolution

SpaceX launches 51 Starlink satellites from California

UK gives Viasat clearance to acquire Inmarsat

Virginia Tech, George Mason to develop networking for satellite constellations

MOON DAILY
Upcoming ISS project will test 3D materials for satellite manufacturing

Great balls of fire! 'Rocket debris' lights up Japan night

General Atomics delivers spacecraft simulator supporting NASA TSIS-2 program

Arianespace to launch the first active debris removal ClearSpace mission with Vega C

MOON DAILY
Researchers measure the light emitted by a sub-Neptune planet's atmosphere for the first time

Webb looks for Fomalhaut's asteroid belt and finds much more

Webb takes closest look yet at mysterious planet

Hubble follows shadow play around planet-forming disk

MOON DAILY
NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Juice's first taste of science from space

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.