. 24/7 Space News .
Terahertz radiation technique opens a new door for studying atomic behavior
by Staff Writers
Stanford CA (SPX) Mar 10, 2020

A compressor using terahertz radiation to shorten electron bunches is small enough to fit into the palm of a hand.

Researchers from the Department of Energy's SLAC National Accelerator Laboratory have made a promising new advance for the lab's high-speed "electron camera" that could allow them to "film" tiny, ultrafast motions of protons and electrons in chemical reactions that have never been seen before. Such "movies" could eventually help scientists design more efficient chemical processes, invent next-generation materials with new properties, develop drugs to fight disease and more.

The new technique takes advantage of a form of light called terahertz radiation, instead of the usual radio-frequency radiation, to manipulate the beams of electrons the instrument uses. This lets researchers control how fast the camera takes snapshots and, at the same time, reduces a pesky effect called timing jitter, which prevents researchers from accurately recording the timeline of how atoms or molecules change.

The method could also lead to smaller particle accelerators: Because the wavelengths of terahertz radiation are about a hundred times smaller than those of radio waves, instruments using terahertz radiation could be more compact.

The researchers published the findings in Physical Review Letters on February 4.

A Speedy Camera
SLAC's "electron camera," or ultrafast electron diffraction (MeV-UED) instrument, uses high-energy beams of electrons traveling near the speed of light to take a series of snapshots - essentially a movie - of action between and within molecules. This has been used, for example, to shoot a movie of how a ring-shaped molecule breaks when exposed to light and to study atom-level processes in melting tungsten that could inform nuclear reactor designs.

The technique works by shooting bunches of electrons at a target object and recording how electrons scatter when they interact with the target's atoms. The electron bunches define the shutter speed of the electron camera. The shorter the bunches, the faster the motions they can capture in a crisp image.

"It's as if the target is frozen in time for a moment," says SLAC's Emma Snively, who spearheaded the new study.

For that reason, scientists want to make all the electrons in a bunch hit a target as close to simultaneously as possible. They do this by giving the electrons at the back a little boost in energy, to help them catch up to the ones in the lead.

So far, researchers have used radio waves to deliver this energy. But the new technique developed by the SLAC team at the MeV-UED facility uses light at terahertz frequencies instead.

Why terahertz?
A key advantage of using terahertz radiation lies in how the experiment shortens the electron bunches. In the MeV-UED facility, scientists shoot a laser at a copper electrode to knock off electrons and create beams of electron bunches. And until recently, they typically used radio waves to make these bunches shorter.

However, the radio waves also boost each electron bunch to a slightly different energy, so individual bunches vary in how quickly they reach their target. This timing variance is called jitter, and it reduces researchers' abilities to study fast processes and accurately timestamp how a target changes with time.

The terahertz method gets around this by splitting the laser beam into two. One beam hits the copper electrode and creates electron bunches as before, and the other generates the terahertz radiation pulses for shortening the electron bunches. Since they were produced by the same laser beam, electron bunches and terahertz pulses are now synchronized with each other, reducing the timing jitter between bunches.

Down to the femtosecond
A key innovation for this work, the researchers say, was creating a particle accelerator cavity, called the compressor. This carefully machined hunk of metal is small enough to sit in the palm of a hand. Inside the device, terahertz pulses shorten electron bunches and give them a targeted and effective push.

As a result, the team could compress electron bunches so they last just a few tens of femtoseconds, or quadrillionths of a second. That's not as much compression as conventional radio-frequency methods can achieve now, but the researchers say the ability to simultaneously lower jitter makes the terahertz method promising. The smaller compressors made possible by the terahertz method would also mean lower cost compared to radio-frequency technology.

"Typical radio-frequency compression schemes produce shorter bunches but very high jitter," says Mohamed Othman, another SLAC researcher on the team. "If you produce a compressed bunch and also reduce the jitter, then you'll be able to catch very fast processes that we've never been able to observe before."

Eventually, the team says, the goal is to compress electron bunches down to about a femtosecond. Scientists could then observe the incredibly fast timescales of atomic behavior in fundamental chemical reactions like hydrogen bonds breaking and individual protons transferring between atoms, for example, that aren't fully understood.

"At the same time that we are investigating the physics of how these electron beams interact with these intense terahertz waves, we're also really building a tool that other scientists can use immediately to explore materials and molecules in a way that wasn't possible before," says SLAC's Emilio Nanni, who led the project with Renkai Li, another SLAC researcher. "I think that's one of the most rewarding aspects of this research."

This project was funded by DOE's Office of Science. The MeV-UED instrument is part of SLAC's Linac Coherent Light Source, a DOE Office of Science user facility.

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Research paper

Related Links
SLAC National Accelerator Laboratory
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Space weather model gives earlier warning of satellite-killing radiation storms
Los Alamos NM (SPX) Mar 03, 2020
A new machine-learning computer model accurately predicts damaging radiation storms caused by the Van Allen belts two days prior to the storm, the most advanced notice to date, according to a new paper in the journal Space Weather. "Radiation storms from the Van Allen belts can damage or even knock out satellites orbiting in medium and high altitudes above the Earth, but predicting these storms has always been a challenge," said Yue Chen, a space scientist at Los Alamos National Laboratory and pri ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Singaporean Daren Tang elected to head global patent agency: UN

Insects, seaweed and lab-grown meat could be the foods of the future

'Digital disruption' a game-changer for climate: Future Earth report

Hydrogen Could Make a Green Energy Future Closer than We Think

OmegA on track to support certification launch in 2021

US trying to catch up with Russia, China in hypersonics

New generation rocket engines to be tested at Esrange

SpaceX Starship prototype explodes in test again

Seismic activity on Mars resembles that found in the Swabian Jura

Ancient meteorite site on Earth could reveal new clues about Mars' past

The seismicity of Mars

Magnetic field at Martian surface ten times stronger than expected

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

Blast off: space minnow Indonesia eyes celestial success

Kleos Space secures 3M Euro loan agreement with Dubai family office

Europlanet launches 10M euro Research Infrastructure to support planetary science

Boeing buying Russian components for Starliner

Magnetic whirls in future data storage devices

Lego's colourful plastic bricks to go green

Cloud data speeds set to soar with aid of laser mini-magnets

Satellite design applied to superyacht

Salmon parasite is world's first non-oxygen breathing animal

Hydrogen energy at the root of life

NASA approves development of universe-studying, planet-finding mission

What if mysterious 'cotton candy' planets actually sport rings?

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.