. 24/7 Space News .
TECH SPACE
Satellite design applied to superyacht
by Staff Writers
Amsterdam, The Netherlands (ESA) Mar 04, 2020

In the same way that satellite design is broken down into subsystems, yacht design involves some main disciplines taking part in all the sessions: structural strength and stiffness; deck and sail handling; systems such as propulsion, power, heating and air conditioning; electronics and finally interior design - creating a desirable, luxurious interior. Additional external experts, such as noise and vibration specialists, attend as required.

Dutch shipbuilder Royal Huisman applied the same concurrent engineering process developed by ESA for space missions to the design of superyacht Sea Eagle II, due to become the world's largest aluminium sailing yacht when delivered to its owner this spring.

This uniquely contemporary 81 m-long three-masted schooner was recently transported by barge from the company's shipyard in Vollenhove to Royal Huisman Amsterdam, where its carbon composite rig will be installed, leaving her ready for sea trials and on-board crew training.

Sea Eagle II's modern style extends to its design, which took place using concurrent engineering, taking inspiration from the long-established Concurrent Design Facility (CDF) at ESA's technical centre ESTEC in Noordwijk, the Netherlands, where it is employed for performing preliminary design and assessment of potential future space missions and systems.

"Satellites and superyachts are both complex machines, and concurrent engineering is advantageous in designing any complex system," explains Massimo Bandecchi, founder of ESA's CDF. "The basic idea is simple: bring together all necessary experts and design tools into a single room to work together as a team on a shared software model that updates immediately as changes are made, to assess design feasibility and trade-offs in a much more effective and reliable way.

"While our main focus is fulfilling the needs of ESA engineering, there has also been strong interest in our work from industry. Concurrent engineering's improved performance in terms of time, cost and efficiency speaks for itself. The result is that more than 50 centres have been built following ESA's original CDF model and are now in operation across Europe, the majority in the space sector, plus around 10 non-space centres."

Stefan Coronel, Royal Huisman's Design and Engineering Manager, received training from Massimo and his team before setting up his own concurrent engineering room: "Yacht building is not rocket science, but it does involve a complex, multi-disciplinary system, with lots of trade-offs to be decided.

"The traditional 'over the hedge' design method - where one knowledge field does its work, then throws it across to the next team in sequence - demands the subsequent checking of feedback then possible design adjustments, so is quite a time consuming process. In the modern yard-building world there isn't so much time to spare.

"That said, compared to the dramatic shortening of satellite conceptual design time achieved by ESA, the main benefit we see from concurrent engineering is not gaining time but that the quality of the final design ends up much better, and more complete - giving us confidence to proceed to the build phase."

Royal Huisman is now applying concurrent engineering to all of their new builds, and many of their refitting and service projects.

Mr. Coronel adds: "Our room is not as fancy as ESA's CDF, but has the same basic approach of a place where everyone can contribute, with means of accessing all normal engineering tools and calculation methods, plus a splinter room for small separate discussions."

In the same way that satellite design is broken down into subsystems, yacht design involves some main disciplines taking part in all the sessions: structural strength and stiffness; deck and sail handling; systems such as propulsion, power, heating and air conditioning; electronics and finally interior design - creating a desirable, luxurious interior. Additional external experts, such as noise and vibration specialists, attend as required.

"The kind of trade-offs that concurrent engineering makes easier to resolve include such deceptively simple tasks as placing a side hatch or staircase," adds Mr. Coronel. "In the case of a hatch it would need to be watertight and endure loads from sea waves, while also integrated with the living space and looking good when trimmed with wood. While any staircase needs to be open and attractive, while also having pipes and electrical cables run through it, and meeting all relevant fire and safety regulations."

The company's adoption of concurrent engineering also meant Sea Eagle II's aluminium panels have had holes and support structures added to them in advance, saving time in construction and the integration of feature such as winches or hatches.

European companies and institutions have variously adopted concurrent engineering for educating students, designing automobiles, planning oil platforms and optimising the production plant of dairy product company FrieslandCampina.


Related Links
Royal Huisman
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
New patented invention stabilizes, rotates satellites
Chicago IL (SPX) Feb 27, 2020
Many satellites are in space to take photos. But a vibrating satellite, like a camera in shaky hands, can't get a sharp image. Pointing it at a precise location to take a photo or perform another task, is another important function that requires accuracy. Vedant, an aerospace engineering doctoral student at the University of Illinois at Urbana-Champaign was working on a way to eliminate vibrations on a satellite when he discovered his invention could also rotate the satellite. "We developed, with ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Hydrogen Could Make a Green Energy Future Closer than We Think

Wastewater recycling project could someday improve human space flight

Book Review: Alcohol in Space - Past, Present and Future

Virgin Galactic opens up prebooking booking option

TECH SPACE
OmegA on track to support certification launch in 2021

New generation rocket engines to be tested at Esrange

SpaceX Starship prototype explodes in test again

Space startup Astra fails to launch rocket on last day of DARPA launch challenge

TECH SPACE
Ancient meteorite site on Earth could reveal new clues about Mars' past

Trembling Mars gives up more seismic secrets

Seismic activity on Mars resembles that found in the Swabian Jura

The seismicity of Mars

TECH SPACE
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

TECH SPACE
Blast off: space minnow Indonesia eyes celestial success

Kleos Space secures 3M Euro loan agreement with Dubai family office

Europlanet launches 10M euro Research Infrastructure to support planetary science

Boeing buying Russian components for Starliner

TECH SPACE
Space weather model gives earlier warning of satellite-killing radiation storms

SpaceLogistics completes first docking of Mission Extension Vehicle-1 to the Intelsat 901 satellite

Polish engineers develop flight software for OPS-SAT mission

New patented invention stabilizes, rotates satellites

TECH SPACE
NASA approves development of universe-studying, planet-finding mission

What if mysterious 'cotton candy' planets actually sport rings?

Life on Titan cannot rely on cell membranes, according to computational simulations

Large Exoplanet Could Have the Right Conditions for Life

TECH SPACE
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.