. | . |
TESS discovers planetary system's second Earth-size world by Jeanette Kazmierczak for GSFC News Greenbelt MD (SPX) Jan 11, 2023
Using data from NASA's Transiting Exoplanet Survey Satellite, scientists have identified an Earth-size world, called TOI 700 e, orbiting within the habitable zone of its star - the range of distances where liquid water could occur on a planet's surface. The world is 95% Earth's size and likely rocky. Astronomers previously discovered three planets in this system, called TOI 700 b, c, and d. Planet d also orbits in the habitable zone. But scientists needed an additional year of TESS observations to discover TOI 700 e. "This is one of only a few systems with multiple, small, habitable-zone planets that we know of," said Emily Gilbert, a postdoctoral fellow at NASA's Jet Propulsion Laboratory in Southern California who led the work. "That makes the TOI 700 system an exciting prospect for additional follow up. Planet e is about 10% smaller than planet d, so the system also shows how additional TESS observations help us find smaller and smaller worlds." Gilbert presented the result on behalf of her team at the 241st meeting of the American Astronomical Society in Seattle. A paper about the newly discovered planet was accepted by The Astrophysical Journal Letters. TOI 700 is a small, cool M dwarf star located around 100 light-years away in the southern constellation Dorado. In 2020, Gilbert and others announced the discovery of the Earth-size, habitable-zone planet d, which is on a 37-day orbit, along with two other worlds. The innermost planet, TOI 700 b, is about 90% Earth's size and orbits the star every 10 days. TOI 700 c is over 2.5 times bigger than Earth and completes an orbit every 16 days. The planets are probably tidally locked, which means they spin only once per orbit such that one side always faces the star, just as one side of the Moon is always turned toward Earth. TESS monitors large swaths of the sky, called sectors, for approximately 27 days at a time. These long stares allow the satellite to track changes in stellar brightness caused by a planet crossing in front of its star from our perspective, an event called a transit. The mission used this strategy to observe the southern sky starting in 2018, before turning to the northern sky. In 2020, it returned to the southern sky for additional observations. The extra year of data allowed the team to refine the original planet sizes, which are about 10% smaller than initial calculations. "If the star was a little closer or the planet a little bigger, we might have been able to spot TOI 700 e in the first year of TESS data," said Ben Hord, a doctoral candidate at the University of Maryland, College Park and a graduate researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "But the signal was so faint that we needed the additional year of transit observations to identify it." TOI 700 e, which may also be tidally locked, takes 28 days to orbit its star, placing planet e between planets c and d in the so-called optimistic habitable zone. Scientists define the optimistic habitable zone as the range of distances from a star where liquid surface water could be present at some point in a planet's history. This area extends to either side of the conservative habitable zone, the range where researchers hypothesize liquid water could exist over most of the planet's lifetime. TOI 700 d orbits in this region. Finding other systems with Earth-size worlds in this region helps planetary scientists learn more about the history of our own solar system. Follow-up study of the TOI 700 system with space- and ground-based observatories is ongoing, Gilbert said, and may yield further insights into this rare system. "TESS just completed its second year of northern sky observations," said Allison Youngblood, a research astrophysicist and the TESS deputy project scientist at Goddard. "We're looking forward to the other exciting discoveries hidden in the mission's treasure trove of data."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |