. 24/7 Space News .
System monitors radiation damage to materials in real-time
by David L. Chandler, MIT News Office
Boston MA (SPX) Dec 19, 2018

The ion beamline at Sandia National Labs where the new radiation damage measurement system has been installed and tested. The radiation damage process is observed in a target chamber located behind the black-box laser enclosure on the right of the image.

In order to evaluate a material's ability to withstand the high-radiation environment inside a nuclear reactor, researchers have traditionally used a method known as "cook and look," meaning the material is exposed to high radiation and then removed for a physical examination. But that process is so slow it inhibits the development of new materials for future reactors.

Now, researchers at MIT and Sandia National Laboratories have developed, tested, and made available a new system that can monitor radiation-induced changes continuously, providing more useful data much faster than traditional methods.

With many nuclear plants nearing the end of their operational lifetimes under current regulations, knowing the condition of materials inside them can be critical to understanding whether their operation can be safely extended, and if so by how much.

The new laser-based system can be used to observe changes to the physical properties of the materials, such as their elasticity and thermal diffusivity, without destroying or altering them, the researchers say. The findings are described in the journal Nuclear Instruments and Methods in Physics Research Section B in a paper by MIT doctoral student Cody A. Dennett, professor of nuclear science and engineering Michael P. Short, and technologist Daniel L. Buller and scientist Khalid Hattar from Sandia.

The new system, based on a technology called transient grating spectroscopy, uses laser beams to probe minute changes at a material's surface that can reveal details about changes in the structure of the material's interior. Two years ago, Dennett and Short adapted the approach to monitor radiation effects. Now, after extensive testing, the system is ready for use by researchers exploring the development of new materials for next-generation reactors, or those looking to extend the lives of existing reactors through a better understanding how materials degrade over time under the harsh radiation environment inside reactor vessels.

The old way of testing materials for their response to radiation was to expose the material for some amount of time, then take it out and "bash it to pieces to see what happened," Dennett explains. Instead, "we wanted to see if you could detect what's happening to the material during the process, and infer how the microstructure is changing."

The transient grating spectroscopy method had already been developed by others, but it had not been used to look for the effects of radiation damage, such as changes in the material's ability to conduct heat and respond to stresses without cracking. Adapting the technique to the unique and harsh environments of radiation required years of development.

To simulate the effects of neutron bombardment - the type of radiation that causes most of the material degradation in a reactor environment - researchers commonly use ion beams, which produce a similar kind of damage but are much easier to control and safer to work with. The team used a 6-megavolt ion accelerator facility at Sandia as the basis for the new system. These types of facilities accelerate testing because they can simulate years of operational neutron exposure in just a few hours.

By using the real-time monitoring ability of this system, Dennett says, it's possible to pinpoint the time when the physical changes to the material start to accelerate, which tends to happen fairly suddenly and progress rapidly. By stopping the experiment just at that point, it's then possible to study in detail what happens at this critical moment. "This allows us to target what the mechanistic reasons behind these structural changes are," he says.

Short says the system could perform detailed studies of the performance of a given material in a matter of hours, whereas it might otherwise take months just to get through the first iteration of finding the point when degradation sets in. For a complete characterization, conventional methods "might be taking half a year, versus a day" using the new system, he says.

In their tests of the system, the team used two pure metals - nickel and tungsten - but the facility can be used to test all sorts of alloys as well as pure metals, and could also test many other kinds of materials, the researchers say. "One of the reasons we're so excited here," Dennett says, is that when they have described this method at scientific conferences, "everybody we've talked to says 'can you try it on my material?' Everybody has an idea of what will happen if they can test their own thing, and then they can move much faster in their research."

The actual measurements made by the system, which stimulates vibrations in the material using a laser beam and then uses a second laser to observe those vibrations at the surface, directly probe the elastic stiffness and thermal properties of the material, Dennett explains. But that measurement can then be used to extrapolate other related characteristics, including defect and damage accumulation, he says. "It's what they tell you about the underlying mechanisms" that's most significant.

The unique facility, now in operation at Sandia, is also the subject of ongoing work by the team to further improve it capabilities, Dennett says. "It's very improvable," he says, adding that they hope to add more different diagnostic tools to probe more properties of materials during irradiation.

Research paper

Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites
Nashville TN (SPX) Dec 13, 2018
The record-setting SpaceX rocket launch yesterday carried a Vanderbilt space radiation experiment aboard CubeSat Fox-1Cliff. Actually, it's a spare. The original payload is aboard CubeSat AO-85 , launched in 2015 and still in low-Earth orbit. After deployment, Fox1-Cliff received its official designation, AO-95. A third Vanderbilt payload has been up one year this month on AO-91, and there are currently two more missions in the works. "Building a spare system is a risk-reduction technique. P ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Russian Progress freighter to fly to ISS under short scheme for second time

A method to monitor indoor crop health no matter what planet you're on

Super-Fast 3-Hour Manned Flights to ISS to Begin in 18 Months

Virgin Galactic's SpaceShipTwo reaches space for first time

Largest piece of SLS rocket test hardware moved for testing

Static test qualifies crew safety launch abort motor for flight in cold conditions

NASA's Plum Brook Station Completes Acoustic Test for SLS

Roscosmos to submit super-heavy rocket project to Government

Opportunity team performs more frequent communication attempts throughout each day

InSight Engineers Have Made a Martian Rock Garden

Planetary scientists assist in capturing image of Insight from orbit

NASA's InSight takes its first selfie

China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

Spacecraft Repo Operations

Update from ESA Council, December 2018

CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

The stiffest porous lightweight materials ever

NYU researchers pioneer machine learning to speed chemical discoveries, reduce waste

Gaming firm settles VR lawsuit with Facebook-owned Oculus

Terahertz laser for sensing and imaging outperforms its predecessors

Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

Most Distant Solar System Object Ever Observed

New Horizons Takes the Inside Course to Ultima Thule

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa

NASA's Juno mission halfway to Jupiter science

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.