. 24/7 Space News .
SPACE TRAVEL
A method to monitor indoor crop health no matter what planet you're on
by Staff Writers
Washington DC (SPX) Dec 18, 2018

illustration only

As the world urbanizes and technologies such as LED grow lights bring down costs, indoor farming is becoming an increasingly important part of the food supply. Eventually, indoor farming techniques could help humans maintain a healthy diet in space. However, because of the completely closed systems in which indoor crops are grown, imbalances in soil nutrients, salinity, temperature, and other factors must be caught quickly to avoid losing a whole crop.

In work published in a recent issue of Applications in Plant Sciences, Dr. Robert Ferl and colleagues at the University of Florida Space Plants Lab developed a light-based tool to assess plant health quickly, accurately, and inexpensively.

Not surprisingly for work coming from the Space Plants Lab, this study was conducted with an eye toward extraterrestrial farming. "Imagine a greenhouse being robotically maintained on Mars," said Dr. Ferl, corresponding author on the study. "The only data we can get back from that greenhouse is electronic.

No sample return. Under those conditions it becomes really beneficial to derive as much data as possible from the photons that are coming off the leaves of plants." These photons make distinctive light signatures that can tell quite a bit about how a plant is doing, when analyzed using the normalized difference vegetation index (NDVI).

The NDVI is a widely used metric of plant health and photosynthetic rate that was originally developed for satellite-based monitoring of plant growth. This metric compares the plants' absorption of different spectra of light; healthy plants give off an identifiable light signature, absorbing light in the photosynthetically active region of light spectra, and reflecting near-infrared light.

"[NDVI] proved to be an interesting starting point for the project simply because there is a large dataset and collective understanding that underpins the idea of using different spectral components to understand plant health," said Dr. Ferl. They adapted single-image NDVI (SI-NDVI), a low-cost version of this analysis, to see if it would be practical for monitoring crop health in indoor farming conditions.

Dr. Ferl and colleagues assessed the efficacy of this monitoring technique by exposing two different plants (arugula and the model plant Arabidopsis thaliana) to two different stressors (salinity and a high-concentration ammonium nitrate treatment) that create distinctive and well-understood stress responses. "Using these well-controlled stresses that have a well-defined biochemical basis for their responses is allowing us to probe the root causes of NDVI difference detections of stress or health responses," said Dr. Ferl.

They were able to detect stress signatures from both treatments well before stress was visible to the naked eye, proving the utility of these techniques as early monitoring systems that can be deployed remotely and relatively inexpensively.

While these authors were primarily motivated by an interest in growing plants in space, the monitoring technique they developed could prove useful here on earth for indoor farmers looking to catch problems in the grow room quickly.

"Single-image NDVI offers the opportunity to derive spectral character from a single RGB image.

This keeps costs down," said Dr. Ferl. "It also opens the door to a large community of citizen scientists and applications developers that are interested in using SI-NDVI concepts commercially." This means that this method could be adapted to monitor a variety of crops grown under indoor conditions, which could mean less expensive, healthier salad greens on your table, whether that table be here or on Mars.

Research Report: Nicole S. Beisel, Jordan B. Callaham, Natasha J. Sng, Dylan J. Taylor, Anna-Lisa Paul, and Robert J. Ferl. 2018. Utilization of single-image normalized difference vegetation index (SI-NDVI) for early plant stress detection. Applications in Plant Sciences 6(10): e1186.


Related Links
Botanical Society of America
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Space-inspired speed breeding for crop improvement
Norwich UK (SPX) Nov 19, 2018
Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops. Scientists at John Innes Centre and the University of Queensland have improved the technique, known as speed breeding, adapting it to work in vast glass houses and in scaled-down desktop growth chambers. The ability to work at these scales gives scientists greater opportunities than ever before to breed disease resistant, climate resilient and nutritious crops to feed a growing globa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Four NASA-sponsored experiments set to launch on Virgin Galactic spacecraft

Russian Progress freighter to fly to ISS under short scheme for second time

Virgin Galactic reaches edge of space in historic flight

Virgin Galactic's SpaceShipTwo reaches space for first time

SPACE TRAVEL
Largest piece of SLS rocket test hardware moved for testing

Static test qualifies crew safety launch abort motor for flight in cold conditions

Roscosmos to submit super-heavy rocket project to Government

Aerojet Rocketdyne awarded DARPA contract to design advanced opfires propulsion system

SPACE TRAVEL
NASA's InSight takes its first selfie

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

InSight's robotic arm ready for some lifting on Mars

SPACE TRAVEL
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

SPACE TRAVEL
Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Update from ESA Council, December 2018

CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

SPACE TRAVEL
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Deep-learning technique reveals 'invisible' objects in the dark

Researchers develop mathematical solver for analog computers

SPACE TRAVEL
Where did the hot Neptunes go

Dancing with the enemy

In search of missing worlds, Hubble finds a fast-evaporating exoplanet

Hubble finds faraway planet vanishing at record speed

SPACE TRAVEL
NASA's Juno mission halfway to Jupiter science

Record Setting Course-Correction Puts New Horizons on Track to Kuiper Belt Flyby

Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.