. 24/7 Space News .
EARTH OBSERVATION
Syncing a NASA laser with an ESA radar for a new look at sea ice
by Kate Ramsayer for GSFC News
Greenbelt MD (SPX) Jul 17, 2020

Slice of an image showing Harbeck Sea Ice in 2019. See full size image here

With a small nudge to a satellite's orbit, scientists will soon have simultaneous laser and radar measurements of ice, providing new insights into Earth's frozen regions. On July 16, the European Space Agency (ESA) begins a series of precise maneuvers that will push the orbit of its radar-carrying CryoSat-2 satellite about half a mile higher - putting it in sync with NASA's laser-carrying Ice, Cloud and land Elevation Satellite 2, or ICESat-2.

When the maneuvers are complete later this summer, the two satellites will pass over a swath of the Arctic within a few hours of each other. That synchronous stretch, of more than 2,000 miles (3,200 kilometers) every day or so, will be key for studying sea ice, which floats on the Arctic Ocean and is moved around with currents and winds. If the satellites take measurements at different times, the two could be measuring different floes of fast-moving ice. Syncing up the satellites provides scientists with two datasets for the same ice.

"Combining these two measurements from space will lead to a golden age," said Tommaso Parrinello, CryoSat-2 mission manager with ESA. "It's a small change for CryoSat-2, but will be a revolution for the science."

Both CryoSat-2's radar and ICESat-2's laser instrument, called a lidar, measure height by sending out signals and timing how long they take to reflect off Earth's surface and return to their respective satellites. But the different signals bounce off some surfaces differently - including snow-covered sea ice. Radars like Cryosat-2's will penetrate through the snow layer and reflect off the ice below. Laser instruments like ICESat-2's will reflect off the top of the snow layer. The difference between the two will give scientists the depth of the snow atop sea ice.

"If you have laser and radar together, it gives you this really exciting opportunity to measure the depth of the snow, which we've really never been able to do before from space," said Rachel Tilling, a sea ice scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland and the University of Maryland in College Park. "And with snow depth, we can get significantly more accurate measurements of sea ice thickness."

With better measurements of snow depth and sea ice thickness, researchers can gain insights into the complex Arctic climate system. Sea ice might just be 10 feet thick or so, but it has an outsized effect on Earth's climate, forming a kind of a protective blanket on the Arctic Ocean, Tilling said. The snow on top reflects radiation from the Sun, keeping the ice from melting and the ocean from warming. The ice itself acts as a barrier between the atmosphere and the ocean - removing it could alter circulation patterns that reach the more temperate parts of the globe. The new information could improve climate models, as well as lead to more accurate shipping navigation forecasts, she said.

The idea of aligning the two satellites has been floating around among the ice science community since CryoSat-2 launched in 2010, when ICESat-2 was still in the development stage, said Tom Neumann, ICESat-2 project scientist at NASA Goddard.

"This opens up new science possibilities that weren't possible with either mission independently, especially for sea ice science," Neumann said. "It's a grassroots effort, promoted by the scientists and engineers asking if there was a way we can make this happen."

The CryoSat-2 flight operations team took a look and after months of analyzing orbital dynamics came up with a plan. The European satellite orbits much higher and slower than the American one, so they couldn't simply follow each other in tandem, said Ignacio Clerigo, CryoSat-2's spacecraft operations manager. Instead, they realized they could raise the altitude of the spacecraft by just more than half a mile (900 meters), through a series of 15 precisely timed thruster burns, and then the two satellites would overlap every 19th orbit of CryoSat-2 and 20th orbit of ICESat-2. The overlaps are mostly over the Arctic; next Northern Hemisphere summer ESA might precisely alter the orbit again with another set of maneuvers to focus on the Antarctic during that region's winter.

"It's a challenge, not because of the maneuvers themselves, but because of the tight schedule," Clerigo said. "We have continuous activities for two weeks. Each step depends on the previous one and if something does not go as expected, we will need to replan quickly to reach the target orbit."

Video: NASA Laser, ESA Radar Sync Up for Sea Ice


Related Links
ICESat-2.
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Proba-V passes the torch
Paris (ESA) Jul 13, 2020
ESA's cubic-metre-sized Proba-V minisatellite, seen left, has ended its seven-year global mission to monitor the daily growth of all Earth's vegetation, a task being taken up by Copernicus Sentinel-3 instead, seen right. Proba-V was launched in 2013 to fill a gap in global vegetation monitoring between the end of France's Spot satellites and Copernicus Sentinel-3. Its compact Vegetation instrument has a 2250-km wide continent-scale field of view, allowing it to image all Earth's vegetation in just ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Astronauts add expertise, refine space station science in orbit

Duckweed is an incredible, radiation-fighting astronaut food

Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

EARTH OBSERVATION
Spaceflight unveils next-gen orbital transfer vehicle to fly aboard SpaceX mission

Southern Launch prepares for lift off In South Australia

Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

EARTH OBSERVATION
UAE again delays Mars probe launch over weather

The quest to find signs of ancient life on Mars

NASA's InSight Flexes Its Arm While Its 'Mole' Hits Pause

Emirates Mars Mission to launch with ASU instrument

EARTH OBSERVATION
Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

EARTH OBSERVATION
Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

SpaceX delays launch of mini-satellites

Airbus expands its SpaceDataHighway with second satellite

Columbus gets a new European science rack

EARTH OBSERVATION
NASA's Deep Space Station in Australia Is Getting an Upgrade

Shock-dissipating fractal cubes could forge high-tech armor

Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

EARTH OBSERVATION
Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

NASA Awards SETI Institute Contract for Planetary Protection Support

Supercomputer reveals atmospheric impact of gigantic planetary collisions

EARTH OBSERVATION
Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.