. | . |
Swimming devices could deliver drugs inside the body by Staff Writers Sheffield, UK (SPX) Dec 09, 2015
Engineers at the University of Sheffield have discovered that tiny spherical bead-like devices can be guided by physical structures while swimming inside fluids. This opens up a wealth of future possibilities, such as using structures in the body to guide drug delivery, or cracks in rocks to direct environmental clean-up and exploration. These devices, which are a similar size to cells and bacteria - around a hundredth of the average diameter of a strand of human hair - could be used to deliver drugs to a specific location inside the body or outside of the body to diagnose diseases in blood samples. Examples include finding proteins indicating cardiac problems or looking for circulating tumour cells that can indicate the spread of cancer. When working with devices on a micron scale, it's very challenging to produce motion from moving parts due to the properties of the fluid - it's similar to humans trying to run through treacle. Previous research has focused on using external magnetic fields to guide the devices, but this requires constant observation so that the device can be guided manually. The research conducted at Sheffield uses a new method, giving the devices a catalytic coating on one side, which creates a chemical reaction when fuel molecules are added, causing the device to move automatically on a pre-determined route, using natural structures as a guide. Dr Stephen Ebbens, Department of Chemical and Biological Engineering at Sheffield, said: "When you're dealing with objects on such a small scale, we found that although our method of moving the devices using a coating and chemical reaction worked very effectively, it was difficult to control its direction, due to other molecules in the fluid jostling it. "We've been working on ways to overcome this and control the movement of the devices along a path using physical structures to direct them. "We are now working on applications for using these devices in the body, in the shorter term focusing on using them for medical diagnosis" In addition to medical applications, these devices could be used in other fields, such as to locate indicators of contamination in environmental samples or to deliver neutralising chemicals to areas affected by oil spills, by using crevices in rocks as the structural guide. The research was a collaborative project led by Dr Stephen Ebbens with Dr Jon Howse and Dr Andrew Campbell from the University of Sheffield; Professor Ramin Golestanian, University of Oxford; Professor Ayusman Sen, Professor Darrell Velegol, Sambeeta Das and Astha Garg, Penn State University; 'Boundaries can Steer Active Janus Spheres' by Sambeeta Das, Astha Garg, Andrew I. Campbell, Jonathan Howse, Ayusman Sen, Darrell Velegol, Ramin Golestanian, and Stephen J. Ebbens is published in Nature Communications on 2nd December. Engineering at Sheffield
Related Links University of Sheffield - Faculty of Engineering All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |