24/7 Space News
ROBO SPACE
Surface Avatar - an astronaut on board the ISS controls a robot team on Earth
From the ISS, NASA astronaut Frank Rubio simultaneously controlled several robots on Earth, letting them operate partially or fully autonomously as needed. This human-robot collaboration is a first and the successful start of a new series of ISS experiments. The Surface Avatar project, led by the DLR Institute of Robotics and Mechatronics, aims to further develop collaborative robots to support astronauts. Focus: Spaceflight, robotics, human-machine interaction
Surface Avatar - an astronaut on board the ISS controls a robot team on Earth
by Staff Writers
Oberpfaffenhofen, Germany (SPX) Jul 27, 2023

Researchers at the German Aerospace Center are developing key technologies such as telepresence robotics for the exploration of space, including the Moon and Mars. This will allow robots on a distant planet to carry out tasks commanded by a human from a spacecraft in orbit. The 'Surface Avatar' mission team at DLR in Oberpfaffenhofen has now demonstrated how this could work. From the International Space Station (ISS), a single person, NASA astronaut Frank Rubio, simultaneously controlled several robots on Earth, allowing them to act partially or fully autonomously as required. This human-robot team collaboration is a first and the successful start of a new series of ISS experiments. The Surface Avatar project is led by the DLR Institute of Robotics and Mechatronics and is being carried out in collaboration with the European Space Agency (ESA).

"For us, it is very important to focus on the aspect of human-robot collaboration in order to provide the astronauts with optimal support during crewed spaceflight. To this end, we developed the technologies for collaborative robots some years ago, and these are now widely used in terrestrial applications. With the latest breakthroughs in AI, robots are becoming so versatile and intelligent that they can easily be used by non-roboticists," explains Alin Albu-Schaffer, Director of the DLR Institute of Robotics and Mechatronics.

The robotics team is pursuing two goals with the experiments. On the one hand, they want to demonstrate how different robots can work together to complete complex tasks for space missions. On the other hand, the team is investigating the variations in how the robots can be telecommanded in order to use them as intelligent co-workers at any time exactly as the situation requires.

Work from manual to fully automated
For the current experiment, a Martian landscape was constructed at the German Space Operations Center in Oberpfaffenhofen. In this scenario, three robots were to carry out initial work on the planet's surface in advance of the arrival of humans. Frank Rubio commanded the robots from the Columbus module of the ISS and was able to carry out all the tasks during the two-hour test period. With the help of DLR's humanoid robot Rollin' Justin, he unloaded the lander and installed a seismic sensor. The astronaut used ESA's Interact Rover to monitor the terrain and had the DLR Landing and Mobility Test Facility (LAMA) to support the scientific activities.

Rubio tested a controller with scalable autonomy, which is a completely new technology. In other words, he could determine the extent to which a robot should perform an action autonomously. At the push of a button, he could have a robot perform a task completely autonomously . But the astronaut could also take over the robot as an avatar and carry out individual steps as if with his own hand. For this purpose, he had the Robot Command Terminal (RCT) at his disposal, which combined three control elements. On a screen, he could see what the individual robot saw at any time, control its movements with a joystick and feel what the robot 'felt' thanks to an interactive device with force feedback. For example, when Frank Rubio as Rollin' Justin placed a seismometer on the planet's surface, the astronaut felt the resistance of the instrument in his hand.

Cooperation on the ground and in space
The RCT is intuitive to use, so Rubio quickly got used to the tele-operation. As a result, he was able to carry out most of the tasks without requiring any assistance. The robotics team monitored the experiment from the Mars laboratory in Oberpfaffenhofen and was in radio contact with the astronaut.

"We are excited to be a step closer to giving astronauts and experts on Earth a wide range of possibilities to command and manage teams of different robots in space. We will be able to use our robots on the surface as physical avatars and intelligent co-workers to execute ever more complex tasks", says Principal Investigator Neal Lii from the DLR Institute of Robotics and Mechatronics.

"This human-robot collaboration paves the way for future missions and permanent outposts on the Moon and beyond," adds ESA Project Leader Thomas Kruger from the ESA Human Robot Interaction Laboratory.

To enable the project team to concentrate on the technical aspects of their work, they were supported by their colleagues at the Columbus Control Centre. The operations team took care of the practical requirements and made sure that Surface Avatar and the other activities on board the ISS were coordinated.

In the future - the Moon and Mars
After the successful technology demonstration, a detailed evaluation will now follow, as well as the preparation of the next simulations. Surface Avatar envisages at least three experiments at intervals of approximately six months. These will become increasingly extensive and complex. The researchers from DLR and ESA will specifically develop the capabilities and telecommanding of the robots for this purpose. The robot team will also be joined by DLR's 'Bert', which can explore rough terrain with its dog-like body and four legs. "The aim is to realise and demonstrate the use of intelligent robots working together with astronauts and to continue to improve the interfaces in order to use the technologies in future crewed missions to the Moon and later to Mars," Albu-Schaffer summarises.

Robots can be used wherever it is too dangerous for humans. Exploration missions in space are therefore inconceivable without robotic support. For future missions, the interaction between humans and robots will play an even more important role. From the Surface Avatar experiments, the researchers are gaining fundamental data on this - for example, how latency affects control, how microgravity influences an astronaut's perception and what challenges arise during operation. For the upcoming Lunar Gateway and other missions to the Moon or Mars, Surface Avatar will thus decisively advance telerobotics.

Related Links
DLR Institute of Robotics and Mechatronics
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
Tech giants form AI group focused on ensuring safety
San Francisco (AFP) July 26, 2023
Four US leaders in artificial intelligence (AI) announced Wednesday the formation of an industry group devoted to addressing risks that cutting edge versions of the technology may pose. Anthropic, Google, Microsoft, and ChatGPT-maker OpenAI said the newly created Frontier Model Forum will draw on the expertise of its members to minimize AI risks and support industry standards. The companies pledged to share best practices with each other, lawmakers and researchers. "Frontier" models refer to ... read more

ADVERTISEMENT
ADVERTISEMENT
ROBO SPACE
Geophysics student employs 800-year-old method for Lunar GPS system

In new space race, scientists propose geoarchaeology can aid in preserving space heritage

On space, poll shows most Americans support NASA's role, U.S. presence

NASA's Bill Nelson to discuss bilateral cooperation in South America

ROBO SPACE
What You Need to Know about NASA's SpaceX Crew-7 Mission

Former Twitter exec says a mercurial Musk rules by 'gut'

Gilmour Space Technologies to accelerate design and manufacturing with Siemens Xcelerator

Kuaizhou 1A launches satellites into orbit

ROBO SPACE
Mawrth Vallis region - the deepest clay deposits on Mars

Unveiling Mars' Past: Olympus Mons as a Gigantic Volcanic Isle

Sleeping the Sol Away: Sol 3894

Perseverance sees Mars in a new light

ROBO SPACE
China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

Shenzhou XVI crew set to conduct their first EVA

Timeline unveiled for China's advanced manned spacecraft's inaugural flight

ROBO SPACE
New Heights for Satellite Communication: Iridium Launches Certus for Aviation

Iridium Board of Directors approves additional share repurchase program

Leaf Space secures additional edging closer to seamless satellite connectivity

Sidus Space to Host SOLAR MEMS Star Tracker on June SpaceX Mission

ROBO SPACE
Imaging shows how solar-powered microbes turn CO2 into bioplastic

For decades, artist Eduardo Kac has been laser-focused on sending hologram project into space

Goddard, Wallops Engineers Test Printed Electronics in Space

Optimum Technologies unveils innovative spacecraft facility in Northern Virginia

ROBO SPACE
Water discovered in rocky planet-forming zone offers clues on habitability

NASA lab hopes to find life's building blocks in asteroid sample

New study reveals Roman Telescope could find 400 Earth-mass rogue planets

Does this exoplanet have a sibling sharing the same orbit

ROBO SPACE
SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.