![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Susanna Kohler AAS Nova Washington DC (AAS) Mar 04, 2021
Some observatories - like the recently collapsed Arecibo Telescope in Puerto Rico - examine nearby objects by bouncing radio light off of them. A new study has now improved how we analyze these observations to learn about near-Earth asteroids. There's plenty we can learn about the universe from passive radio astronomy, in which we observe the radio signals emitted by distant sources. But when it comes to objects that lie near the Earth, we have another option: active radio astronomy. With radar astronomy, we're in the driver's seat: we send a beam of radio light in the direction of our target - perhaps a close planet like Venus, or a nearby asteroid - and then observe the reflected light that returns to us. By measuring timing differences in the reflected signal, we can map out the shape of the object and its motion. What's more, measurements of the polarization of the reflected light - the direction the light waves are vibrating - tell us about how the light was scattered from the surface and near-surface of the body. This, in turn, provides information about the outer material properties of the object. Does this material consist of fine-grained dust, or large boulders? How porous is it? How reflective? The answers to these questions help us to comprehend the nature of bodies close to the Earth. This is especially useful in the context of near-Earth asteroids, where understanding the structure and composition of these potential hazards could be critical for mitigation tactics or spacecraft visitation.
Separating the Pieces To address this, a team of scientists led by Dylan Hickson (Arecibo Observatory) recently developed an improved methodology to analyze the ground-based radar polarimetry of near-Earth asteroids. Hickson and collaborators show how we can decompose the reflected radio images of asteroids to derive specific polarimetric products, and they then use numerical simulations to improve their interpretations of these signals. The authors apply their methodology to archived radar observations of three near-Earth asteroids obtained by Arecibo, demonstrating that they can retrieve a wealth of information about the physical properties of the asteroids' surfaces using this approach.
An Uncertain Future Fortunately, we have archives that contain past data for more than 1,100 radar-detected asteroids and comets. Reanalysis of this content using the authors' new methodology is certain to provide valuable information while the field of radar astronomy reshapes itself going forward.
Research Report: "Polarimetric Decomposition of Near-Earth Asteroids Using Arecibo Radar Observations," Dylan C. Hickson et al 2021 Planet. Sci. J. 2 30.
![]() ![]() Comet makes a pit stop near Jupiter's asteroids Baltimore MD (SPX) Feb 26, 2021 Long road trips can be tedious and boring. That's why many road travelers break up their arduous journey by making rest stops along the way. Astronomers found that at least one roaming comet is doing the same thing. The wayward object made a temporary stop near giant Jupiter. The icy visitor has plenty of company: It has settled near the family of captured asteroids known as Trojans that are co-orbiting the Sun alongside Jupiter. This is the first time a comet-like object has been spotted ne ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |