. | . |
Organic materials essential for life on Earth are found for the first time on the surface of an asteroid by Staff Writers London, UK (SPX) Mar 05, 2021
New research from Royal Holloway, has found water and organic matter on the surface of an asteroid sample returned from the inner Solar System. This is the first time that organic materials, which could have provided chemical precursors for the origin of life on Earth, have been found on an asteroid. The single grain sample was returned to Earth from asteroid 'Itokawa' by JAXA's first Hayabusa mission in 2010. The sample shows that water and organic matter that originate from the asteroid itself have evolved chemically through time. The research paper suggests that Itokawa has been constantly evolving over billions of years by incorporating water and organic materials from foreign extra-terrestrial material, just like the Earth. In the past, the asteroid will have gone through extreme heating, dehydration and shattering due to catastrophic impact. However, despite this, the asteroid came back together from the shattered fragments and rehydrated itself with water that was delivered via the in fall of dust or carbon-rich meteorites. This study shows that S-type asteroids, where most of Earth's meteorites come from, such as Itokawa, contain the raw ingredients of life. The analysis of this asteroid changes traditional views on the origin of life on Earth which have previously heavily focussed on C-type carbon-rich asteroids. Dr Queenie Chan from the Department of Earth Sciences at Royal Holloway, said: "The Hayabusa mission was a robotic spacecraft developed by the Japan Aerospace Exploration Agency to return samples from a small near-Earth asteroid named Itokawa, for detailed analysis in laboratories on Earth. "After being studied in great detail by an international team of researchers, our analysis of a single grain, nicknamed 'Amazon', has preserved both primitive (unheated) and processed (heated) organic matter within ten microns (a thousandth of a centimetre) of distance. "The organic matter that has been heated indicates that the asteroid had been heated to over 600 C in the past. The presence of unheated organic matter very close to it, means that the in fall of primitive organics arrived on the surface of Itokawa after the asteroid had cooled down." Dr Chan, continues: "Studying 'Amazon' has allowed us to better understand how the asteroid constantly evolved by incorporating newly-arrived exogenous water and organic compounds. "These findings are really exciting as they reveal complex details of an asteroid's history and how its evolution pathway is so similar to that of the prebiotic Earth. "The success of this mission and the analysis of the sample that returned to Earth has since paved the way for a more detailed analysis of carbonaceous material returned by missions such as JAXA's Hayabusa2 and NASA's OSIRIS-Rex missions. "Both of these missions have identified exogeneous materials on the target asteroids Ryugu and Bennu, respectively. Our findings suggest that mixing of materials is a common process in our solar system."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |