. 24/7 Space News .
IRON AND ICE
Study finds evidence of the origin of metal-rich near-earth asteroids
by Staff Writers
Tucson AZ (SPX) Oct 04, 2021

Photograph of stony-iron meteorite called mesosiderite showing iron-nickel metal mixed with silicate rocky material. Two metal-rich near-Earth asteroids observed by Planetary Science Institute astronomer Juan Sanchez are thought to be made of this rare class of meteorite.

Little is known about the population of metal-rich Near-Earth Asteroids (NEAs), their number, origin, and relationship with meteorites found on Earth. A new paper by Planetary Science Institute Associate Research Scientist Juan Sanchez explains how near-infrared spectroscopic data of two NEAs reveals new information about the composition and physical properties of these bodies.

"We find that both NEAs are composed of mostly metal and a small fraction of silicate minerals, similar to mesosiderites, a rare type of stony-iron meteorites found on Earth," said Sanchez, lead author of the paper "Physical Characterization of Metal-rich Near-Earth Asteroids 6178 (1986 DA) and 2016 ED85" that appears in Planetary Science Journal. PSI Laboratory Technician Neil Pearson is also an author.

"Analysis of their orbits allows us to trace their origin to a region in the outer asteroid belt where the largest metal-rich asteroids reside," Sanchez said. The asteroid belt is located between the orbits of Mars and Jupiter.

"According to some studies, there are more than 60 parent bodies represented among iron meteorites found on Earth; however, those parent bodies have not been identified so far. There are also stony-iron meteorites and metal-rich carbonaceous chondrites whose origin is unknown," Sanchez said. "Because NEAs represent a direct link between meteorites found on Earth and their parent bodies throughout the Solar System, the identification of metal-rich NEAs get us closer to determining the specific origin of the meteorites that derive from them."

The larger NEA, (1986 DA), is shown to be primarily metal by using radar data from an earlier study. Metal has a much higher radar reflectivity than rocky bodies composed of silicate minerals. The team's new near-infrared spectra of 1986 DA confirmed that the asteroid surface is a mixture of about 85% metal and 15% pyroxene, a rock-forming silicate mineral found in igneous and metamorphic rocks.

For the other NEA, 2016 ED85, there is no radar data available, but Sanchez finds that its near-infrared spectrum is almost identical to the spectrum of 1986 DA and other metal-rich asteroids, suggesting that this object has a similar composition.

The paper's findings are based on observations from the NASA Infrared Telescope Facility on the island of Hawaii. The work was funded by the NASA Near-Earth Object Observations Program, which also funds the NASA Infrared Telescope Facility.

Research Report: "Physical Characterization of Metal-rich Near-Earth Asteroids 6178 (1986 DA) and 2016 ED85"


Related Links
Planetary Space Institute
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
NASA's Lucy science mission will fly by eight asteroids
Orlando FL (UPI) Oct 01, 2021
NASA plans to launch its Lucy spacecraft from Florida on Oct. 16 to fly by eight asteroids starting in 2025, marking the first time scientists will gain close-up views of them. The spacecraft for the $981 million mission is at Kennedy Space Center for launch preparations, which include packing atop an Atlas V rocket for its 12-year voyage. United Launch Alliance plans to send the probe into space from adjacent Cape Canaveral Space Force Station. Lucy will pass by a single asteroid in 2025 on its ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russian actress, director enter space station to film movie

Russian crew blast off to film first movie in space

Russian crew arrives at space station to film first movie in orbit

To boldly go: Star Trek's Shatner spacebound with Blue Origin

IRON AND ICE
Blue Origin accused of 'toxic' work culture, compromising safety

NASA readies for future Artemis Moon Missions with rocket engine test series

Aerojet Rocketdyne completes Space Launch System rocket engine test series

Endurosat and Exolaunch announce launch agreements for Spacex Falcon 9 Rideshare Missions

IRON AND ICE
NASA selects crew for simulated trip to a Mars Moon

Using dunes to interpret wind on Mars

HiRISE spots Perseverance in South Seitah

NASA plans careful restart for Mars helicopter after quiet period

IRON AND ICE
Building a home in the sky

China opens Shenzhou-12 return capsule at ceremony

China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

IRON AND ICE
Spire Global and SpaceChain announce new partnership

Trading space: ESA bolsters European business

Join our free online Space2Connect event

Space technology rocketing upwards, reports IDTechEx

IRON AND ICE
Urban mining for metals flashes forward

New model simplifies orbital radar trade-off studies for environmental monitoring

Beam diagnostics for future laser wakefield accelerators

In Siberia, a copper mine hopes to become a global energy pivot

IRON AND ICE
Planets gone rogue could sustain life

Investigating the potential for life around the galaxy's smallest stars

First planet to orbit 3 Stars discovered

'Planet confusion' could slow Earth-like exoplanet exploration

IRON AND ICE
SwRI scientists confirm decrease in Pluto's atmospheric density

Hubble shows winds in Jupiter's Great Red Spot are speeding up

Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.