. 24/7 Space News .
New model simplifies orbital radar trade-off studies for environmental monitoring
by Staff Writers
Moscow, Russia (SPX) Oct 05, 2021

stock image only

Skoltech researchers Alessandro Golkar and Ksenia Osipova, and former Massachusetts Institute of Technology (MIT) student Giuseppe Cataldo (now working at NASA's Goddard Space Flight Center) have developed, within the framework of a Skoltech-MIT collaboration, a model to help engineers create and select the most promising conceptual designs of satellite radar systems. By optimizing the design of these rapidly evolving instruments, the model promotes their faster and more cost-efficient introduction, leading to better maps and storm, flood, and landslide monitoring.

Satellite imaging of the Earth is used to monitor agricultural land use, ocean ice cover, coastal change, and hostile weather events. These observations are made in different bands of the electromagnetic spectrum, including radio waves. Unlike optical or infrared imagers, radars observe targets independently of their illumination, bypass clouds, and generally operate well in any weather.

However, in order to provide the same resolution as a shorter-wavelength instrument, the radar has to be physically larger, making it hard to fit on a satellite. One way around this is using synthetic aperture radars. SARs achieve high resolution by artificially increasing their aperture, or antenna "size."

Mounted on a satellite, a SAR emits a radar pulse and travels a certain distance before the pulse returns and is picked up at a different location. The distance travelled then factors into the virtual size of the antenna, as if it were much larger, which translates into better image quality with a comparatively small antenna.

Despite this aperture inflation trick, SARs have been historically flown on large and expensive satellites, because radars were still fairly bulky and consumed a lot of power. This has been changing with the advent of smaller and lighter SARs. These are in the early stages of development but are evolving fast, already taking over such tasks as oil spill detection and surveillance.

As the number of ever smaller satellites in orbit is growing, SAR engineers wonder which of them are feasible carriers for the miniaturizing radars. This is particularly relevant as recent research suggests dozens of so-called micro- or nanosatellite-based SARs working together could vastly outperform conventional large SAR missions, if cost-efficiency is factored into the equation.

With the range of options extended, it is becoming increasingly challenging to balance radar performance characteristics against other parameters of a SAR launch mission. Some of the variables involved are the available orbits, radar and satellite models - with their physical dimensions and a host of characteristics, such as data rate and power consumption. This complexity calls for a computational approach to support the design of future SAR-based Earth observation missions.

To address this, a recent Skoltech-led study presents a mathematical model for creating optimal SAR conceptual designs. The model optimizes SAR characteristics with a method called trade space exploration. This term, which is a combination of "trade-off" and "playspace," implies that the model will help early-stage designers analyze the numerous trade-offs involved in the process, rapidly evaluating many design alternatives and identifying optimal solutions to pursue.

The paper demonstrates the utility of the model by looking at radar instruments on a broad range of small satellite platforms: 1,265 feasible radar designs are narrowed down to less than 44 optimal ones for different radio frequencies. The researchers conclude that small satellites are a feasible platform for the higher-frequency 8-12 GHz and 4-8 GHz radars, but not for the 1-2 GHz band.

Conditions for making the latter type of SARs feasible are discussed, along with the feasibility bounds and technical constraints on the associated instrument and spacecraft requirements. Pulse repetition frequency emerges as the main limiting constraint on the SAR trade space. In other words, this characteristic is the most powerful factor - ahead of power consumption, antenna size, data rate, etc. - for narrowing down radar configurations to a limited set of feasible designs.

In a separate analysis, the team considers radars for the very small 3U CubeSat platform, identifying 44 optimal designs among about 13,000 feasible candidates. The study explores the operational constraints required for the development of such innovative miniaturized radars. The authors conclude that SARs for CubeSats are feasible from an instrument-level perspective and propose that their designs be now considered at the mission level - together with the implications for spacecraft design.

The model presented in the study applies to radar systems mounted on a single satellite. It could, however, be extended in the future to account for ways of combining SAR satellites into constellations.

Research Report: "Small satellite synthetic aperture radar (SAR) design: A trade space exploration model"

Related Links
Skolkovo Institute Of Science And Technology
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Going hyperspectral for CHIME
Paris (ESA) Sep 28, 2021
With Covid restrictions a little more relaxed, scientists from Europe and the USA were finally able to team up for a long-awaited field experiment to ensure that a new Copernicus satellite called CHIME will deliver the best possible data products as soon as it is operational in orbit. This new mission is being developed to support EU policies on the management of natural resources, ultimately helping to address the global issue of food security. The Copernicus Hyperspectral Imaging Mission for the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

US firm sees 'exciting' moment as space tourism booms

Russia's Soyuz spacecraft lands in Kazakhstan after ISS mission

Russian rocket tests briefly destabilise space station

Russians return to Earth after filming first movie in space

South Korea launches first domestic space rocket but mission fails

Rocket Lab to recover Electron Rocket, introduce helicopter support operations

U.S. needs nuclear spacecraft to compete with China, NASA official says

South Korea launches own space rocket for the first time

Life on Mars: simulating Red Planet base in Israeli desert

NASA plans careful restart for Mars helicopter after quiet period

NASA selects crew for simulated trip to a Mars Moon

Using dunes to interpret wind on Mars

China's longest-yet crewed space mission impressive, expert says

Test conducted to verify spacecraft technology, FM says

Chinese astronauts arrive at space station for longest mission

China's space station worth ever Yuan

Conclusions from Satellite Constellations 2 Released

Russian Soyuz rocket launches 36 new UK satellites

Over half OneWeb constellation now deployed

Eutelsat raises its shareholding in OneWeb

A world without access to space

New model simplifies orbital radar trade-off studies for environmental monitoring

Laser Communications Relay Demonstration gears up for launch

Concrete: the world's 3rd largest CO2 emitter

Scientists find evidence the early solar system harbored a gap between its inner and outer regions

NASA scientist looks to AI, lensing to find masses of free-floating planets

First planet to orbit 3 Stars discovered

Planets gone rogue could sustain life

The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density

Hubble shows winds in Jupiter's Great Red Spot are speeding up

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.