. 24/7 Space News .
TECH SPACE
Stenciling with atoms in 2-dimensional materials possible
by Staff Writers
University Park PA (SPX) May 10, 2017


A Raman image of the Nittany Lion shows the possibilities of large-area patterning of 2-D transition metal dichalcoginides. Credit: Eichfeld, Penn State

The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless. In new research, Penn State material scientists report two discoveries that will provide a simple and effective way to "stencil" high-quality 2D materials in precise locations and overcome a barrier to their use in next-generation electronics.

In 2004, the discovery of a way to isolate a single atomic layer of carbon - graphene --opened a new world of 2D materials with properties not necessarily found in the familiar 3D world. Among these materials are a large group of elements - transition metals - that fall in the middle of the periodic table.

When atoms of certain transition metals, for instance molybdenum, are layered between two layers of atoms from the chalcogenide elements, such as sulfur or selenium, the result is a three-layer sandwich called a transition metal dichalcogenide. TMDs have created tremendous interest among materials scientists because of their potential for new types of electronics, optoelectronics and computation.

"What we have focused on in this paper is the ability to make these materials over large areas of a substrate in precisely the places we want them," says Joshua Robinson, associate professor of materials science and engineering.

"These materials are of interest for a variety of next-generation electronics, not necessarily to replace silicon, but to augment current technologies and ultimately to bring new chip functionality to silicon that we never had before."

In order to integrate TMDs with silicon in transistors, chip companies will need to have a method to place the atoms precisely where they are needed. That method has not been available until now.

In their 2D Materials paper, "Selective-area Growth and Controlled Substrate Coupling of Transition Metal Dichalcogenides," Robinson and his group demonstrate, for the first time, a simple method for making precise patterns of two-dimensional materials using techniques familiar to any nanotechnology lab.

"It turns out the process is straight forward," Robinson explains.

"We spin photoresist on the sample in the cleanroom, as if we are going to start making a device. It can be any of a number of polymers that are used in nanofabrication. We then expose it to ultraviolet light in the desired areas, and we develop it like a photograph. Where the polymer was exposed to light, it washes away, and we then clean the surface further with standard plasma-etching processes. The 2D materials will only grow in the areas that have been cleaned."

A second simple discovery described in this work that could help advance the field of TMD research involves overcoming the strong effect a substrate has on the 2D materials grown on top of the substrate.

In this case, molybdenum disulfide, a highly studied semiconductor TMD, was grown on a sapphire substrate using typical powder-based deposition techniques. This resulted in the properties of the sapphire/molybdenum disulfide interface controlling the desired properties of the molybdenum disulfide, making it unsuitable for device fabrication.

"We needed to decouple the effects of the substrate on the 2D layer without transferring the layers off the sapphire," says Robinson, "and so we simply tried dunking the as-grown material into liquid nitrogen and pulling it out into air to 'crack' the interface. It turned out that was enough to separate the molybdenum disulfide from the sapphire and get closer to the intrinsic performance of the molybdenum disulfide."

The process is gentle enough to weaken the bonds connecting the 2D material to the substrate without completely setting it free. The exact mechanism for loosening the bonds is still under investigation, because of the complexity of this "simple process," said Robinson.

The two materials shrink at different rates, which could cause them to pop apart, but it could also be due to the bubbling of the liquid nitrogen as it turns into gas, or even contact with water vapor in the air that forms ice on the sample.

"We're still working on understanding the exact mechanism, but we know that it works really well, at least with molybdenum disulfide," Robinson says.

The three co-lead authors on the paper are doctoral students Brian Bersch and Yu-Chuan Lin, and research associate Sarah Eichfeld. Also contributing to this work are Robinson's doctoral student Keohao Zhang and his former doctoral. student, Ganesh Bhimanapati, now at Intel, undergraduate student Aleksander Piasecki, and Materials Research Institute staff scientist Michael Labella. Robinson is co-director of the Center for Atomically Thin Multifunctional Coatings and the Center for Two-Dimensional and Layered Materials, and director of user programs for the Penn State 2D Crystal Consortium, all part of the Penn State Materials Research Institute.

TECH SPACE
First luminescent molecular system with a lower critical solution temperature
Osaka, Japan (SPX) May 02, 2017
Depending on their solubility, solids can completely dissolve in liquids to form clear solutions, or form suspensions that still contain undissolved solid. Solutions of polymers often have a lower critical solution temperature; only below this temperature is the polymer completely soluble at all concentrations. However, it is rare for non-polymeric mixtures to have a lower critical solutio ... read more

Related Links
Penn State
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Receives Proposals for Future Solar System Mission

'Road to Nowhere': Retired Cosmonaut Reveals How It Feels to Walk in Space

Orion Motor Ready for Crewed Mission

Orbiting at 250 Statute Miles, Florida Tech Experiment Tested

TECH SPACE
Testing Prepares NASA's Space Launch System for Liftoff

GSLV Successfully Launches South Asia Satellite

ISRO Successfully Launches GSAT-9 'SAARC' South Asian Communication Satellite

First Contract under Booster Propulsion Technology Maturation BAA Complete

TECH SPACE
Seasonal Flows in Valles Marineris

NASA Rover Curiosity Samples Active Linear Dune on Mars

Is Anything Tough Enough to Survive on Mars

Japan aims to uncover how moons of Mars formed

TECH SPACE
China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

China's cargo spacecraft completes in-orbit refueling

TECH SPACE
AIA report outlines policies needed to boost the US Space Industry competitiveness

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

TECH SPACE
First luminescent molecular system with a lower critical solution temperature

Space radiation reproduced in the lab for better, safer missions

Stenciling with atoms in 2-dimensional materials possible

High temperature step-by-step process makes graphene from ethene

TECH SPACE
First SETI Institute Fellows Announced

Taking the pulse of an ocean world

Astrophysicists find that planetary harmonies around TRAPPIST-1 save it from destruction

Two Webb instruments well suited for detecting exoplanet atmospheres

TECH SPACE
Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

Waves of lava seen in Io's largest volcanic crater

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.