. | . |
Steampunk in Orbit by Staff Writers Scottsdale AZ (SPX) Dec 21, 2020
December 18, 2020 - Since their introduction in 1999, CubeSats have made a dramatic mark in space, widely used for technology demonstrations, earth sensing, telecom and other missions. But their full potential has been held back by the lack of a good propulsion solution. That's about to change, thanks to a breakthrough engine design which Howe Industries has submitted to the National Science Foundation (NSF) in fulfillment of their SBIR grant. It is estimated that of the 2700 CubeSats (and other nanosatellites) which have been created, less than 10% have included a means of propulsion. This leaves them at the mercy of gravity and atmospheric drag until soon falling to earth (even when still fully functional). "The problem with existing propulsion options is twofold," according to Dr. Troy Howe (PhD), Howe Industries CEO. "On the one hand, these systems require substantial power to operate, siphoning energy from the primary payload. "And then there are the more 'energetic' propulsion systems (typically scaled down from use on much larger satellites). These rely upon toxic, highly pressurized or even explosive liquids, such as hydrazine. This is problematic as most CubeSats share a ride to orbit and launch providers are leery of endangering their other, often more valuable cargo. While deployment from the International Space Station (which is common for CubeSats) precludes any satellite propulsion which likewise might pose a risk to the station and personnel. "The ThermaSat steam engine overcomes these obstacles while fulfilling other must-have requirements for a successful CubeSat propulsion system", concludes Dr. Howe. Quite simply, the ThermaSat propellant is plain water. But unlike in a traditional steam engine, there's no boiler. Rather, the water is flashed into superheated steam in the instant before expanding out of the nozzle. Even better, the self-sufficient, plug-n-play ThermaSat requires no power from the satellite; nor are there bulky, protruding reflectors to obstruct the mission objectives. (In the image, shown above, the extended solar panels are there solely for powering the satellite payload). While simple and reliable (with only two moving parts) and smaller than a loaf of Wonder Bread, the ThermaSat delivers enough total impulse (1,800 Ns with 1kg/2.2 lbs. of water) to maintain a CubeSat in a Low Earth Orbit altitude of 375 km (233 miles) for more than five years. This represents a huge potential savings in satellite replacement. Alternatively, the ThermaSat can enable months-long missions as low in the ionosphere as 250 km (155 miles). At this altitude - without propulsion - a CubeSat would otherwise come crashing down after just a few weeks. Sustaining such missions at the edge of space enables much higher resolution for remote sensing while dramatically decreasing communications latency (with an increase in total communications throughput). This could be particularly important in an emergency (whether meteorological or geopolitical). A monitoring satellite could even park in a higher orbit, firing up the ThermaSat to descend for a closer look on short notice. "The heart of the system is the unique thermal capacitor, made from phase-changing materials, which concentrates and stores the solar heat collected from just 20 square inches of exposed surface area", according to Jack Miller, R and D engineer for the ThermaSat program. "Using a combination of photonic crystals and gold-tinted mirrors the completely inert capacitor reaches a blistering operating temperature of 1,052K (1,433 Fahrenheit). This results in a specific energy comparable to a lithium-ion battery, but without the potential for explosion." In addition to station keeping, the ThermaSat can be used to raise orbits, for geolocation missions (which require formation flying) as well as for scheduled deorbiting and collision avoidance (likely to become a requirement). The system can also enable rapid constellation deployment (without relying upon variable drag). And because it requires no power from the satellite, the ThermaSat might be deployed as a strap-on propulsion unit when servicing/upgrading even much larger satellites. But perhaps most exciting, is the potential to enable a new class of smart, autonomous satellites able to relay data and even to 'swarm' together for specific tasks. Whatever the mission, with the ThermaSat steam engine, a satellite will unerringly maintain course as it rides invisible tracks through space.
Ethiopia takes over operation of Chinese-built satellite Beijing (XNA) Dec 16, 2020 The Ethiopian Remote Sensing Satellite-1, the African nation's first satellite, has been handed over to its Ethiopian operators, according to the China Academy of Space Technology, which designed and built the spacecraft. A delivery ceremony was held earlier this month in Beijing with participants from both countries, it said in a statement. Ethiopian Ambassador to China Teshome Toga Chanaka said at the ceremony that thanks to the Chinese government's wholehearted support and the project tea ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |