. 24/7 Space News .
Scientists and philosopher team up, propose a new way to categorize minerals
by Staff Writers
Washington DC (SPX) Dec 31, 2020

file illustration only

A diamond lasts forever, but that doesn't mean all diamonds have a common history. Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet's lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as "diamond" by the authoritative guide to minerals - the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification.

For many physical scientists, this inconsistency poses no problem. But the IMA system leaves unanswered questions for planetary scientists, geobiologists, paleontologists and others who strive to understand minerals' historical context.

So, Carnegie's Robert Hazen and Shaunna Morrison teamed up with CU Boulder philosophy of science professor Carol Cleland to propose that scientists address this shortcoming with a new "evolutionary system" of mineral classification - one that includes historical data and reflects changes in the diversity and distribution of minerals through more than 4 billion years of Earth's history.

Their work is published by the Proceedings of the National Academy of Sciences.

"We came together from the very different fields of philosophy and planetary science to see if there was a rigorous way to bring the dimension of time into discussions about the solid materials that compose Earth," Hazen said.

The IMA classification system for minerals dates to the 19th century when geologist James Dwight Dana outlined a way to categorize minerals on the basis of unique combinations of idealized compositions of major elements and geometrically idealized crystal structure.

"For example, the IMA defines quartz as pure silicon dioxide, but the existence of this idealized version is completely fictional," said Morrison. "Every specimen of quartz contains imperfections - traces of its formation process that makes it unique."

This approach to the categorization system means minerals with distinctly different historical origins are lumped together - as with the example of diamonds - while other minerals that share a common causal history are split apart.

"The IMA system is typical," said lead author Cleland, explaining that most classification systems in the natural sciences, such as the periodic table of the elements, are time independent, categorizing material things "solely on the basis of manifest similarities and differences, regardless of how they were produced or what modifications they have undergone."

For many researchers, a time-independent system is completely appropriate. But this approach doesn't work well for planetary and other historically oriented geosciences, where the emphasis is on understanding the formation and development of planetary bodies.

Differences in a diamond or quartz crystal's formative history are critical, Cleland said, because the conditions under which a sample was formed and the modifications it has undergone "are far more informative than the mere fact that a crystal qualifies as diamond or quartz."

She, Hazen, and Morrison argue that what planetary scientists need is a new system of categorizing minerals that includes historical "natural kinds."

Biology faced an analogous issue before Darwin put forward his theory of evolution. For example, lacking an understanding of how organisms are historically related through evolutionary processes, 17th century scholars debated whether bats are birds. With the advent of Darwin's work in the 19th century, however, biologists classified them separately on evolutionary grounds, because they lack a common ancestor with wings.

Because a universal theory of "mineral evolution" does not exist, creating such a classification system for the geosciences is challenging. Hazen, Morrison, and Cleland's proposed solution is what they call a "bootstrap" approach based on historically revelatory, information-rich chemical, physical, and biological attributes of solid materials. This strategy allows scientists to build a historical system of mineral kinds while remaining agnostic about its underlying theoretical principles.

"Minerals are the most durable, information-rich objects we can study to understand our planet's origin and evolution," Hazen said. "Our new evolutionary approach to classifying minerals complements the existing protocols and offers the opportunity to rigorously document Earth's history."

Morrison concurred, adding: "Rethinking the way we classify minerals offers the opportunity to address big, outstanding scientific mysteries about our planet and our Solar System, through a mineralogical lens. In their imperfections and deviations from the ideal, minerals capture the story of what has happened to them through deep time - they provide a time machine to go back and understand what was happening on our planet and other planets in our solar system millions or billions of years ago."

Research paper

Related Links
Carnegie Science
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

MIT to use the ISS to test smart, electronic textiles for use in spacesuits and spacecraft
Houston TX (SPX) Dec 15, 2020
Space can be a dangerous place for astronauts and spacecraft, with harsh conditions and orbital debris that travels at incredibly high speeds. However, imagine a warning system that could be stitched into the fibers of spacesuits or integrated into the exterior of spacecraft that could detect debris impacts and send an early hazard alert. This is the goal of a new study by researchers at the Massachusetts Institute of Technology (MIT). The MIT team will embed sensor fibers into conventional spaces ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Rice seeds carried to the moon and back sprout

Marsquakes, water on other planets, asteroid hunting highlight 2020 in space

China to launch core module of space station in first half of 2021

US may buy seat on Russia's Soyuz for astronaut's flight to ISS in Spring 2021,

SDA awards contract to SpaceX

Launch of Long March 4C closes out China 2020 space plan

Russia plans more Proton-M launches in 2021

mu Space to push Thai space industry, planning to build its first spaceship in 2021

NASA video shows Perseverance rover's planned 'terror' landing on Mars

Fluvial Mapping of Mars

A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

How to get people from Earth to Mars and safely back again

China's space achievements out of this world

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

China plans to launch four manned spacecraft in next two years

Mission accomplished, now on to the next: China Daily editorial

Record Year for FAA Commercial Space Activity

Voyager Space Holdings to buy all of Nanoracks

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

Scientists and philosopher team up, propose a new way to categorize minerals

New radiation vest technology protects astronauts, doctors

Order and disorder in crystalline ice explained

Spontaneous robot dances highlight a new kind of order in active matter

Discovery boosts theory that life on Earth arose from RNA-DNA mix

Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.