. 24/7 Space News .
EXO WORLDS
Icy giant planets in the laboratory
by Staff Writers
Dresden, Germany (SPX) Mar 27, 2019

Even under extremely high pressure, such as those in the interior of Neptune or Uranus, there are stable crystal structures of carbon (orange) and hydrogen (gray). This discovery by HZDR researchers reveals new possibilities for the inner structure of the ice giants.

Giant planets like Uranus and Neptune may contain much less free hydrogen than previously assumed. Researchers from the German Helmholtz-Zentrum Dresden-Rossendorf (HZDR) drove shock waves through two different types of plastic to reach the same temperatures and pressures present inside such planets, and observed the behavior using ultra-strong X-ray laser pulses.

Unexpectedly, one of these plastics kept its crystalline structure even at the most extreme pressures reached. Since the icy giant interiors are made up of the same components as the plastic, planetary models may need to be partially reconsidered, as reported in the journal Scientific Reports (doi: 10.1038/s41598-019040782-5).

Carbon and hydrogen are among the most abundant elements in the universe, and are a major constituent of icy giant planets such as Uranus and Neptune. In the outer atmosphere, these atoms are found in the form of methane gas, but deeper inside the high pressure can lead to more complex hydrocarbon structures. Predicting the phases and structures that material takes at these conditions is one of the big questions of planetary research.

In order to better understand the structure of the ice giants, an international team led by the two HZDR researchers Dr. Nicholas Hartley and Dr. Dominik Kraus investigated two types of plastic in a laboratory experiment: polystyrene and polyethylene. These materials are similar in chemistry to the hydrocarbon inside the planets.

At the SLAC National Accelerator Laboratory in the US, the scientists exposed the samples to conditions predicted to be present around ten thousand kilometers below the surface of Neptune and Uranus. At this depth, the pressure is almost as high as in the core of the earth and two million times higher than the atmospheric pressure on the earth's surface.

Reaching extremely high pressures
At such high pressures and temperatures, the only possible structure that the researchers expected was diamond, or that the samples would be melted. Instead, they observed stable hydrocarbon structures up to the highest pressures reached, but only for the polyethylene samples. "We were very surprised by this result," says Hartley.

"We did not expect the different initial state to make such a big difference at such extreme conditions. It's only recently, with the development of brighter X-ray sources, that we're able to study these materials. We were the first to think that it might be possible - and it was."

Since the extreme conditions inside the ice giants on Earth can only be reached for a brief moment, the researchers need lightning-fast measurement methods. There are only a handful of ultrafast X-ray laser facilities worldwide, and time for measurements is rare and highly demanded.

Kraus and Hartley were awarded a total of three twelve hour shifts for their experiments, and so had to use every minute to carry out as many measurement runs as possible. The actual moment where they shock the sample and probe with the X-ray laser takes only a few billionths of a second.

An unexpected structure appears
Even during the experiments, the researchers were able to recognize initial results: "We were very excited because, as hoped, polystyrene formed diamond-like structures of carbon. For polyethylene, however, we saw no diamonds for the conditions reached in this experiment. Instead, there was a new structure that we could not explain at first", Hartley recalls.

By comparing the data with previous results at lower pressures, they identified it as a stable structure of polyethylene, which had been seen at five times lower pressure, and only at ambient temperatures.

The discovery of the research team demonstrates how important it is to better characterize the temperature and pressure conditions inside the ice giants, and the chemistry that these lead to, in order to understand their structure and physical properties.

Models of Uranus and Neptune assume that the unusual magnetic fields of these planets may originate from free hydrogen, which these results could imply is less common than expected. In the future, the researchers want to use mixtures including oxygen, in order for their experiments to better match the chemistry inside the planets.

The researchers from HZDR were joined by scientists from the SLAC National Accelerator Laboratory, the Osaka University, the TU Dresden, the TU Darmstadt, the GSI Helmholtzzentrum fuer Schwerionenforschung, the Lawrence Livermore National Laboratory, the University of California in Berkeley, the University of Warwick, the European XFEL, LULI at the Ecole Polytechnique in Paris and the University Rostock.

Research paper


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Neural Networks Predict Planet Mass
Bern, Switzerland (SPX) Mar 14, 2019
To find out how planets form astrophysicists run complicated and time consuming computer calculations. Members of the NCCR PlanetS at the University of Bern have now developed a totally novel approach to speed up this process dramatically. They use deep learning based on artificial neural networks, a method that is well known in image recognition. Planets grow in stellar disks accreting solid material and gas. Whether they become bodies like Earth or Jupiter depends on different factors like the p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
ESA studies water in space

Spacewalkers Complete Battery Swaps for Station Power Upgrades

NASA scraps all-women spacewalk for lack of well-fitting suits

The time to apply to space for humanity is now!

EXO WORLDS
More efficient satellite launch platform on the horizon

Sunrise and Phase Four partner for Next-gen electric propulsion

SLS engine section approaches finish line for first flight

Arianespace orbits 600th satellite, the PRISMA EO satellite for Italy

EXO WORLDS
Laser blasts show asteroid bombardment, hydrogen make great recipe for life on Mars

Google and Haughton-Mars Project Partner on Moon-Mars Exploration Prep

ExoMars landing platform arrives in Europe with a name

NASA's Mars 2020 rover is put to the test

EXO WORLDS
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

EXO WORLDS
Inmarsat agrees to $3.4 bn takeover from consortium

OneWeb starts to mass-produce satellites in Florida

UAE announces pan-Arab body for space programme

Lockheed Martin develops world-first LTE-Over-Satellite System

EXO WORLDS
Terminator-like liquid metal moves and stretches in 3D space

Vector's GalacticSky GSky-1 satellite ready for launch later this year

Spontaneous spin polarization demonstrated in a two-dimensional material

Sun-Synchronous Orbits are Obsolete

EXO WORLDS
Neural Networks Predict Planet Mass

Astrobiology seminar aims to inspire a look into the bounds of life

Carbon monoxide detectors could warn of extraterrestrial life

Cooking Up Alien Atmospheres on Earth

EXO WORLDS
Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.