24/7 Space News
SPACE MEDICINE
Space could revolutionize stem cell research for treating disease
illustration only
Reuters Events SMR and Advanced Reactor 2025
Space could revolutionize stem cell research for treating disease
by Clarence Oxford
Los Angeles CA (SPX) Nov 05, 2024

Stem cell research conducted aboard the International Space Station (ISS) is revealing promising therapeutic potential that could transform biotherapies for complex diseases, according to two Mayo Clinic scientists. The analysis, led by Fay Abdul Ghani and Dr. Abba Zubair and published in 'NPJ Microgravity', demonstrates how microgravity can enhance the regenerative power of stem cells. Dr. Zubair, a laboratory medicine specialist and director at Mayo Clinic's Center for Regenerative Biotherapeutics, described microgravity as an environment with "weightlessness or near-zero gravity," which offers unique research opportunities.

"Studying stem cells in space has uncovered cell mechanisms that would otherwise be undetected or unknown within the presence of normal gravity," explained Dr. Zubair. "That discovery indicates a broader scientific value to this research, including potential clinical applications."

Dr. Zubair has launched multiple stem cell experiments to the ISS, with each mission examining whether space conditions are ideal for cultivating a large quantity of potent stem cells. His research investigates whether space-grown cells retain their efficacy upon returning to Earth.

"The goal of almost all space flight in which stem cells are studied is to enhance growth of large amounts of safe and high-quality clinical-grade stem cells with minimal cell differentiation," said Dr. Zubair. He hopes that studying these space-cultured cells could pave the way for treatments targeting age-related diseases, including stroke, dementia, neurodegenerative disorders, and cancer.

Challenges in Growing Stem Cells on Earth
Adult stem cells sourced from bone marrow and fat tissue naturally resist division and specialization, meaning the number of these cells in any patient remains limited. To meet the demand for clinical and research applications, scientists must multiply these cells, a process that is costly, time-consuming, and often yields inconsistent outcomes.

Experiments conducted on the ISS have shed light on the behavior of stem cells, showing how microgravity supports enhanced cell growth and function. In space, cells can grow in a more realistic three-dimensional structure, which mimics conditions in human tissue far better than the two-dimensional culture methods available on Earth.

"The space environment offers an advantage to the growth of stem cells by providing a more natural three-dimensional state for their expansion, which closely resembles growth of cells in the human body," Dr. Zubair noted.

Insights from Space-Grown Stem Cells
Research into space-expanded stem cells suggests potential applications in disease modeling. These cells could be grown to simulate realistic models of conditions like cancer, enabling scientists to observe disease progression and test innovative treatments in vitro.

Several cell types studied in space have demonstrated promising clinical implications:

- Mesenchymal stem cells, adult stem cells known for their healing properties, showed enhanced immunosuppressive abilities when expanded in microgravity.

- Hematopoietic stem cells, which are critical for blood regeneration, displayed potential to differentiate into red and white blood cells, offering a possible future therapy for blood cancers.

- Cardiovascular progenitor cells could support heart tissue repair by promoting growth in the blood vessels and muscles essential for recovery after a heart attack.

- Neural stem cells maintained regenerative abilities after returning from space, sparking interest in their potential for treating central nervous system diseases.

Addressing Obstacles in Space-Based Research
Despite the exciting possibilities, space stem cell research poses notable challenges. Prolonged exposure to microgravity might weaken cells, impacting their performance once back on Earth. Additionally, cosmic radiation may damage cellular DNA, though Dr. Zubair's team found no evidence of chromosomal damage leading to cancer in mesenchymal stem cells grown in space.

"Stem cell research in the cosmos is in its early stages, and the full effects of multiplying cells in weightlessness are not fully understood," Dr. Zubair wrote. He emphasized the need for continued research, funding, and a deeper exploration of space's potential for advancing regenerative medicine.

The research received funding from NASA and the Mayo Clinic's Center for Regenerative Biotherapeutics.

Research Report:Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth

Related Links
Center for Regenerative Biotherapeutics at Mayo Clinic
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Irvine group creates enzyme for efficient synthetic genetic material production
Los Angeles CA (SPX) Oct 09, 2024
A research team at the University of California, Irvine has developed an enzyme that efficiently produces threose nucleic acid (TNA), a synthetic genetic material that could lead to new therapeutic options for cancer, autoimmune disorders, metabolic conditions, and infectious diseases. The ability to synthesize TNA, which is more stable than DNA, brings researchers closer to creating future TNA-based drugs. Published in 'Nature Catalysis', the study highlights the creation of an enzyme called 10-9 ... read more

SPACE MEDICINE
SpaceX prepares resupply mission to ISS

Students' Experiments Launch to Space Aboard SpaceX Resupply Mission

After pause, NASAs Voyager 1 back communicating with mission team

Students aid NASA's plant growth research in space

SPACE MEDICINE
Gilmour Space secures historic Australian permit for Eris orbital launch test flight

Russia launches record 55 satellites, including 2 Iranian-made

Southern Launch fully approved for Whalers Way rocket pad in South Australia

NASA offers virtual launch attendance, guest passport for next SpaceX supply mission

SPACE MEDICINE
Ancient Martian waterways carved beneath icy caps

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

Red Rocks with Green Spots at 'Serpentine Rapids'

SPACE MEDICINE
Shenzhou 18 crew back in China after 6-month mission to Tiangong station

Chinese space station crew returns after six months in orbit

Shenzhou XIX Crew Joins Tiangong Space Station for Crew Rotation

Three-person crew enters China's Tiangong space station

SPACE MEDICINE
SAPA Pushes for Stricter Definition of 'Australian Business' to Enhance National Economic Complexity

Impulse Space selected for HALO Program by Space Development Agency

Hawkeye 360 enhances global monitoring with Clusters 9 and 10 now in opeation

Boeing exploring sale of space business: report

SPACE MEDICINE
NASA to transform in-space manufacturing with laser beam welding collaboration

A smart screen for cooling and sun protection

New AI microbiome tool offers breakthroughs in forensics and epidemiology

Wooden bricks set to sea off Denmark to track plastic waste

SPACE MEDICINE
Optimal Learning Rates Revealed in New Study on Adaptation

Ariel spacecraft prepares for rigorous tests at Airbus facility

Microbes thrive on iron in oxygen-free environments

Astronomers Identify New Organic Molecule in Interstellar Space

SPACE MEDICINE
Uranus moon Miranda may hold a hidden ocean below its surface

NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Is life possible on a Jupiter moon? NASA goes to investigate

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.