24/7 Space News
TECH SPACE
NASA to transform in-space manufacturing with laser beam welding collaboration
illustration only
Reuters Events SMR and Advanced Reactor 2025
NASA to transform in-space manufacturing with laser beam welding collaboration
by Wayne Smith
Huntsville AL (SPX) Nov 08, 2024

As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA's Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.

The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity's next giant leap of sending astronauts to Mars and beyond.

"For a long time, we've used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space," said Andrew O'Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA's technical lead for the project.

"But we're starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding." The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.

To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.

"Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we're still on the ground," said O'Connor.

In August 2024, a joint team from Ohio State's Welding Engineering and Multidisciplinary Capstone Programs and Marshall's Materials and Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.

While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.

"During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign," said Will McAuley, an Ohio State welding engineering student.

Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA's Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.

The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.

The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.

"We're really excited about laser beam welding because it gives us the flexibility to operate in different environments," O'Connor said.

This effort is sponsored by NASA Marshall's Research and Development funds, the agency's Science Mission Directorate Biological and Physical Sciences Division of the agency's Science Mission Directorate, and NASA's Space Technology Mission Directorate, including NASA Flight Opportunities.

Related Links
Marshall Space Flight Center
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
A smart screen for cooling and sun protection
Tokyo, Japan (SPX) Nov 07, 2024
A collaborative research effort between POSTECH and Korea University has led to the development of an innovative transparent radiative cooling film. Professors Junsuk Rho and his team from POSTECH's Mechanical, Chemical, and Electrical Engineering departments, alongside PhD candidates Byoungsu Ko and Jaebum Noh, worked with Professor Heon Lee and PhD candidate Dongwoo Chae from Korea University's Department of Materials Science and Engineering to create a film that mimics an insect screen to manage sola ... read more

TECH SPACE
SpaceX launches resupply mission to International Space Station

SpaceX prepares resupply mission to ISS

Dragon Freedom Prepares for Short Relocation Ahead of Cargo Mission

Students' Experiments Launch to Space Aboard SpaceX Resupply Mission

TECH SPACE
MSP technology powers accurate manufacturing for space industry

Student capsules brave re-entry heat for NASA research

Centaur Upper Stage Exhibit Honors Longstanding Contributions to Space Program

From contract signing to orbit in just ten weeks

TECH SPACE
Ancient Martian waterways carved beneath icy caps

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

Red Rocks with Green Spots at 'Serpentine Rapids'

TECH SPACE
Shenzhou 18 brings back samples for space habitability and materials research

Shenzhou 18 crew back in China after 6-month mission to Tiangong station

Chinese space station crew returns after six months in orbit

Shenzhou XIX Crew Joins Tiangong Space Station for Crew Rotation

TECH SPACE
SAPA Pushes for Stricter Definition of 'Australian Business' to Enhance National Economic Complexity

China launches alliance for aerospace and satellite internet in Xiong'an

Horizon Technology Finance approves $10M loan for Ursa Space Systems expansion

Florida university consortium designated Space Research Leader

TECH SPACE
NASA to transform in-space manufacturing with laser beam welding collaboration

Startup turns mining waste into critical metals for the U.S.

A smart screen for cooling and sun protection

Toxic towns in Kyrgyzstan battling radioactive danger

TECH SPACE
Optimal Learning Rates Revealed in New Study on Adaptation

Ariel spacecraft prepares for rigorous tests at Airbus facility

Microbes thrive on iron in oxygen-free environments

Astronomers Identify New Organic Molecule in Interstellar Space

TECH SPACE
Uranus moon Miranda may hold a hidden ocean below its surface

NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Is life possible on a Jupiter moon? NASA goes to investigate

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.