. 24/7 Space News .
SPACE MEDICINE
Soft, self-healing devices mimic biological muscles
by Staff Writers
Boulder CO (SPX) Jan 31, 2018


HASEL actuators can be designed as soft grippers to handle and manipulate delicate objects.

In the basement of the Engineering Center at the University of Colorado Boulder, a group of researchers is working to create the next generation of robots. Instead of the metallic droids you may be imagining, they are developing robots made from soft materials that are more similar to biological systems. Such soft robots contain tremendous potential for future applications as they adapt to dynamic environments and are well-suited to closely interact with humans.

A central challenge in this field known as "soft robotics" is a lack of actuators or "artificial muscles" that can replicate the versatility and performance of the real thing. However, the Keplinger Research Group in the College of Engineering and Applied Science has now developed a new class of soft, electrically activated devices capable of mimicking the expansion and contraction of natural muscles.

These devices, which can be constructed from a wide range of low-cost materials, are able to self-sense their movements and self-heal from electrical damage, representing a major advance in soft robotics.

The newly developed hydraulically amplified self-healing electrostatic (HASEL) actuators eschew the bulky, rigid pistons and motors of conventional robots for soft structures that react to applied voltage with a wide range of motions. The soft devices can perform a variety of tasks, including grasping delicate objects such as a raspberry and a raw egg, as well as lifting heavy objects. HASEL actuators exceed or match the strength, speed and efficiency of biological muscle and their versatility may enable artificial muscles for human-like robots and a next generation of prosthetic limbs.

Three different designs of HASEL actuators are detailed in separate papers appearing in the journals Science and Science Robotics.

"We draw our inspiration from the astonishing capabilities of biological muscle," said Christoph Keplinger, senior author of both papers, an assistant professor in the Department of Mechanical Engineering and a Fellow of the Materials Science and Engineering Program.

"HASEL actuators synergize the strengths of soft fluidic and soft electrostatic actuators, and thus combine versatility and performance like no other artificial muscle before. Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant."

One iteration of a HASEL device, described in Science (video summary of paper), consists of a donut-shaped elastomer shell filled with an electrically insulating liquid (such as canola oil) and hooked up to a pair of opposing electrodes. When voltage is applied, the liquid is displaced and drives shape change of the soft shell. As an example of one possible application, the researchers positioned several of these actuators opposite of one another and achieved a gripping effect upon electrical activation. When voltage is turned off, the grip releases.

Another HASEL design is made of layers of highly stretchable ionic conductors that sandwich a layer of liquid, and expands and contracts linearly upon activation to either lift a suspended gallon of water or flex a mechanical arm holding a baseball.

In addition to serving as the hydraulic fluid which enables versatile movements, the use of a liquid insulating layer enables HASEL actuators to self-heal from electrical damage. Other soft actuators controlled by high voltage, also known as dielectric elastomer actuators, use a solid insulating layer that fails catastrophically from electrical damage. In contrast, the liquid insulating layer of HASEL actuators immediately recovers its insulating properties following electrical damage. This resiliency allows researchers to reliably scale up devices to exert larger amounts of force.

"The ability to create electrically powered soft actuators that lift a gallon of water at several times per second is something we haven't seen before. These demonstrations show the exciting potential for HASEL" said Eric Acome, a doctoral student in the Keplinger group and the lead author of the Science paper.

"The high voltage required for operation is a challenge for moving forward. However, we are already working on solving that problem and have designed devices in the lab that operate with a fifth of the voltage used in this paper."

HASEL actuators can also sense environmental input, much like human muscles and nerves. The electrode and dielectric combination in these actuators forms a capacitor. This capacitance - which changes with stretch of the device - can be used to determine the strain of the actuator. The researchers attached a HASEL actuator to a mechanical arm and demonstrated the ability to power the arm while simultaneously sensing position.

A third design, detailed in Science Robotics and known as a Peano-HASEL actuator, consists of three small rectangular pouches filled with liquid, rigged together in series. The polymer shell is made from the same low-cost material as a potato chip bag, and is thin, transparent, and flexible. Peano-HASEL devices contract on application of a voltage, much like biological muscle, which makes them especially attractive for robotics applications. Their electrically-powered movement allows operation at speeds exceeding that of human muscle.

The versatility and simplicity of the HASEL technology lends itself to widespread industrial applications, both now and in the future.

"We can make these devices for around ten cents, even now," said Nicholas Kellaris, also a doctoral student in the Keplinger group and the lead author of the Science Robotics study.

"The materials are low-cost, scalable and compatible with current industrial manufacturing techniques."

Future research will attempt to further optimize materials, geometry and explore advanced fabrication techniques in order to continue improving the HASEL platform and to rapidly enable practical applications.

The researchers have secured patents for the technology and are currently exploring commercial opportunities with the assistance of CU Boulder's Technology Transfer Office.

"The research coming out of Dr. Keplinger's lab is nothing short of astounding," said Bobby Braun, dean of CU Boulder's College of Engineering and Applied Science.

"He and his team of students are helping create the future of flexible, more-humanlike robots that can be used to improve people's lives and well-being. This line of research is a core, interdisciplinary strength of our college."

Research paper

SPACE MEDICINE
Growing organs a few ink drops at a time
Osaka, Japan (SPX) Dec 28, 2017
Printed replacement human body parts might seem like science fiction, but this technology is rapidly becoming a reality with the potential to greatly contribute to regenerative medicine. Before any real applications, "bioprinting" still faces many technical challenges. Processing the bio-ink and making it stick to itself and hold the desired printed gel structure have been proving particul ... read more

Related Links
University of Colorado at Boulder
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Chinese, Russians shore up Middle East tourism

S. Korea's Chinese tourist slump endures despite pledges

Macron 'completely changed' France's image, says tech billionaire

Italy's First Female Astronaut: 'No Room for Conflicts in Space'

SPACE MEDICINE
Falcon Heavy rocket ready for fueling, static fire test

ISRO hopes GSAT-11 is the last Indian satellite to be launched by a foreign space agency

Rocket Lab successfully sends rocket into orbit

Aerojet Rocketdyne RS-25 test advances exploration efforts

SPACE MEDICINE
Opportunity gets dust cleaning and passes 45 kilometers of driving

Crater Neukum named after Mars Express founder

New technique for finding life on Mars

Next Mars Analog mission will help improve efficiency and reduce dust exposure

SPACE MEDICINE
Space agency to pick those with the right stuff

China to select astronauts for its space station

China Focus: The making of heroes - the women and men of China's space program

China to launch first student satellite for scientific education

SPACE MEDICINE
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

SPACE MEDICINE
Researchers find first evidence of sub-Saharan Africa glassmaking

Changing the color of 3-D printed objects

Ultralow power consumption for data recording

Applications now open for the Space Debris Training Course

SPACE MEDICINE
A new 'atmospheric disequilibrium' could help detect life on other planets

Viruses are everywhere, maybe even in space

Rutgers scientists discover 'Legos of life'

NASA study shows disk patterns can self-generate

SPACE MEDICINE
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.