. 24/7 Space News .
ENERGY TECH
Smaller, stronger magnets could improve fusion devices
by Staff Writers
Plainsboro NJ (SPX) Jul 26, 2022

PPPL principal engineer Yuhu Zhai with images of a high-temperature superconducting magnet, which could improve the performance of spherical tokamak fusion devices.

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a way to build powerful magnets smaller than before, aiding the design and construction of machines that could help the world harness the power of the sun to create electricity without producing greenhouse gases that contribute to climate change.

The scientists found a way to build high-temperature superconducting magnets that are made of material that conducts electricity with little or no resistance at temperatures warmer than before. Such powerful magnets would more easily fit within the tight space inside spherical tokamaks, which are shaped more like a cored apple than the doughnut-like shape of conventional tokamaks, and are being explored as a possible design for future fusion power plants.

Since the magnets could be positioned apart from other machinery in the spherical tokamak's central cavity to corral the hot plasma that fuels fusion reactions, researchers could repair them without having to take anything else apart. "To do this, you need a magnet with a stronger magnetic field and a smaller size than current magnets," said Yuhu Zhai, a principal engineer at PPPL and lead author of a paper reporting the results in IEEE Transactions on Applied Superconductivity. "The only way you do that is with superconducting wires, and that's what we've done."

Fusion, the power that drives the sun and stars, combines light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of safe and clean power to generate electricity.

High-temperature superconducting magnets have several advantages over copper magnets. They can be turned on for longer periods than copper magnets can because they don't heat up as quickly, making them better suited for use in future fusion power plants that will have to run for months at a time. Superconducting wires are also powerful, able to transmit the same amount of electrical current as a copper wire many times wider while producing a stronger magnetic field.

The magnets could also help scientists continue to shrink the size of tokamaks, improving performance and reducing construction cost. "Tokamaks are sensitive to the conditions in their central regions, including the size of the central magnet, or solenoid, the shielding, and the vacuum vessel," said Jon Menard, PPPL's deputy director for research. "A lot depends on the center. So if you can shrink things in the middle, you can shrink the whole machine and reduce cost while, in theory, improving performance."

These new magnets take advantage of a technique refined by Zhai and researchers at Advanced Conductor Technologies, the University of Colorado, Boulder, and the National High Magnetic Field Laboratory, in Tallahassee, Florida. The technique means that the wires do not need conventional epoxy and glass fiber insulation to ensure the flow of electricity. While simplifying construction, the technique also lowers costs. "The costs to wind the coils are much lower because we don't have to go through the expensive and error-prone epoxy vacuum-impregnation process," Zhai said. "Instead, you're directly winding the conductor into the coil form."

Moreover, "high-temperature superconducting magnets can help spherical tokamak design because the higher current density and smaller windings provide more space for support structure that helps the device withstand the high magnetic fields, enhancing operating conditions," said Thomas Brown, a PPPL engineer who contributed to the research. "Also, the smaller, more powerful magnets give the machine designer more options to design a spherical tokamak with geometry that could enhance overall tokamak performance. We're not quite there yet but we're closer, and maybe close enough."

This research was supported by the U.S. Department of Energy (Small Business Innovation Research and Laboratory Directed Research and Development).

Research Report:HTS Cable Conductor for Compact Fusion Tokamak Solenoids


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Fusion's newest ambassador at MIT
Boston MA (SPX) Jul 21, 2022
When high school senior Tuba Balta emailed MIT Plasma Science and Fusion Center (PSFC) Director Dennis Whyte in February, she was not certain she would get a response. As part of her final semester at BASIS Charter School, in Washington, she had been searching unsuccessfully for someone to sponsor an internship in fusion energy, a topic that had recently begun to fascinate her because "it's not figured out yet." Time was running out if she was to include the internship as part of her senior project. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US regrets 'surprise' Russia exit from Space Station

Russia to quit International Space Station 'after 2024'

Space Perspective unveils patented capsule design

Space For Humanity will send first Egyptian to space via Blue Origin

ENERGY TECH
NASA prepares for Space Launch System rocket services contract

CAA launches consultation on UK space launch from Cornwall

Marine Management Organisation opens consultation on Virgin Orbit launch site

Rocket launches can create night-shining clouds away from the poles

ENERGY TECH
Sol 3544: Bye-Bye Bolivar

Sols 3541-3543: Teamwork? Sure!

NASA details plans to bring back Mars rock samples

Study: Explosive volcanic eruption produced rare mineral on Mars

ENERGY TECH
Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

New Chinese rocket makes debut flight

China releases images of Martian satellite

China's Tianzhou-3 cargo craft re-enters atmosphere under control

ENERGY TECH
Clarification From Eutelsat Communications

SpaceX launches another 53 Starlink satellites in sixth launch of month

Eutelsat KONNECT VHTS built by Thales shipped to Kourou

Eutelsat and OneWeb to Combine: Company Statement

ENERGY TECH
Making Muons for Scientific Discovery, National Security

Innovation with the additive advantage

Raytheon to upgrade Australian border surveillance aircraft with advanced radar

Decoding the structure and properties of near-infrared reflective pigments

ENERGY TECH
How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

A New Method to Detect Exoplanets

Rocking shadows in protoplanetary discs

ENERGY TECH
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.