. | . |
Innovation with the additive advantage by Staff Writers Los Angeles CA (SPX) Jul 28, 2022
While companies across the world rise to the challenges affecting supply chains, a transformation in technology and innovation is shifting the manufacturing paradigm. Additive manufacturing (AM), more commonly known as 3D printing, is an innovative process where objects are created one layer at a time. Shapes and designs that were once thought impossible and too complex are now possible to produce. The range of design is expanded, and its potential is limitless. "Combined with powerful technology, analysis tools and new materials, Northrop Grumman is reshaping how it approaches design and manufacturing processes, like using 3D printing to support missions in new ways," said Matt Bromberg, corporate vice president, global operations, Northrop Grumman. Northrop Grumman has been at the forefront of adopting this compelling design and build method. AM delivers agility, consolidation and savings on lead-times, costs and resources. Products are produced faster and cheaper through its capabilities. Northrop Grumman continues to innovate using AM and has helped facilitate this transformation across several platform-types, ranging from radio frequency sensors, engines, hypersonic weapons and aerospace structures.
3D Printing in Action Northrop Grumman has also advanced AM applications to space. For NASA's Artemis I mission, Northrop Grumman designed twin solid rocket boosters to propel the Space Launch System (SLS) rocket. In 2020, Northrop Grumman shipped 10 rocket motor segments from Promontory, Utah, to the Kennedy Space Center, where the motor segments were assembled into two separate solid rocket boosters. The assembly of these boosters relied in part on 3D printing and computer modeling to modify heritage component designs from the shuttle program and to create new components that are compatible with heritage assembly ones in use. In 2019, Made In Space (MIS) selected Northrop Grumman to support NASA's Space Technology Mission Directorate (STMD) demonstration of the autonomous robotic manufacturing and assembly platform, Archinaut. The objective of Archinaut's flight demonstration mission is to construct two 10-meter solar arrays, on orbit, to power a small Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) satellite. Once on orbit, Archinaut will employ its extended structure AM capabilities and advanced robotics to manufacture and assemble the satellite's power generation system. "Demonstrating additive manufacturing in space will open up new doors in the design and construction of space structures that to date have been limited by the volume of a launch vehicle," said Richard Stapp, vice president and chief technology officer, Northrop Grumman. "Effectively building structures in space is one of the next big steps in our continuous journey of space exploration."
Investing in the Transformation of Manufacturing In 2019, Northrop Grumman awarded the U.S. Naval Academy (USNA) Foundation a $150,000 grant to support AM in the Academy's Division of Engineering and Weapons. The grant funded the growth of the USNA MakerSpace, a student-faculty 3D printing laboratory, and its associated engineering programs. "Advancements in additive manufacturing are enabling the rapid development of next-generation materials and hardware with reduced life-cycle costs and cycle times to give our warfighters the tactical advantage against emerging threats in complex combat environments," says Larry Ferranto, vice president, maritime/land systems and sensors operations, Northrop Grumman. "Investing in educational programs like this helps to develop critical manufacturing capability in future military leaders and further strengthens our important partnership with the U.S. Navy and Marine Corps."
A bright future for 3D printing Waltham MA (SPX) Jun 23, 2022 For the Raytheon Technologies team working on a rapid-response effort at the onset of the COVID-19 pandemic, there was only one place to turn: additive manufacturing, also known as 3D printing. They sent a design to about 100 machines at company sites around the world, which in turn began cranking out personal protective equipment for emergency responders. "It was unprecedented to bring the entire corporation together to print one single file across multiple processes and materials," said Jesse Bo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |