. 24/7 Space News .
TECH SPACE
New method for synthesizing novel magnetic material
by Staff Writers
Krasnoyarsk, Russia (SPX) Feb 05, 2018

This is a microphotography of Dy3Fe5O12.

Scientists from Siberian Federal University (SFU) together with their colleagues from the Institute of Chemistry and Chemical Technology of Siberian Department of Russian Academy of Sciences and Kirensky Institute of Physics of Siberian Department of Russian Academy of Sciences used a new method for synthesizing iron-dysprosium garnet.

Magnetic materials of this class are used in microwave and magnetic photon equipment. Iron-dysprosium garnet is understudied and may have previously unknown properties. The article was published in Materials Science and Engineering journal.

Although the method of anion resin exchange precipitation has been known since 1960s-1970s, it was only used to synthesize the hydroxides of aluminum, chrome (III), iron (III), indium (III), and several other compounds. No valuable breakthroughs have been made in this area in the past 40 years, and there are almost no modern publications on it.

A team of Siberian scientists was the first to use anion exchange resin to obtain complex oxide systems. This work is only one of a series of publications prepared by a group of scientists from SFU and the Institute of Chemistry of Siberian Department of Russian Academy of Sciences.

"Our laboratory has been working on the method of anion resin exchange precipitation applicable to different systems for two decades now, and using it we've obtained materials with magnetic properties," told Svetlana Saikova, professor of the department of inorganic chemistry of SFU, and doctor of chemistry.

Anion resin exchange precipitation is a method of the so-called "wet" chemistry. The process takes place at room temperature and under atmospheric pressure. The product is being synthesized from a mixture of water solutions of salts, but instead of traditional precipitation agents (alkali or ammonia) an anion exchange resin is used.

It is a polymer - an insoluble matrix in the form of small (0.25-0.5 mm radius) microbeads trapping of anions from initial salts. Traditional precipitation of metals often leads to the formation of non-crystalline loose deposits (i.e. finely dispersed particles without any structure) that are difficult to separate from the subsided electrolyte.

The use of anion exchange resin prevents the pollution of the product with cations. Moreover, due to the fact that the anions of the initial salt are trapped by polymer beads, scientists were possible to obtain pure metals hydroxides. Moreover, the anion resin exchange precipitation has good results as ions of the solution form insoluble compounds or transfer to the sorbent phase.

Another advantage of this method is that it allows to obtain the product in controlled conditions without high temperatures or aggressive substances. All reaction products are generated at the same time which makes their further interaction easier.

Due to the ability to optimize the correlation between reacting substances, to choose the ion-exchange resin, and, if required, to add substances regulating the precipitation rate to the system scientists can carry out the synthesis with fixed pH values. It is important, if the final product should have certain properties, such as metastable or active phases which is impossible during regular alkali subsidence because of the local oversaturation effect.

This method is much more convenient, cheaper, and better controlled that the widely spread solid phase garnet synthesis method that is used today to obtain the majority of garnet-structured compounds. In this method finely milled mixtures with particular composition are baked in the air or vacuum at different temperatures.

Depending on the initial mixture, the process may take different time. Then, taking into account the required properties of the final product, temperature within the range of 1300-1350C is selected. Moreover, for the composition to be homogeneous, milling and baking are done several times.

The deposit obtained in the course of anion-exchange subsidence is also processed with heat. However, it requires 700-900C and less baking time. All products are subsided at the same time, the components start to interact on the stage of reaction, and further thermal processing only increases the interaction speed. Due to high activity of nanosized precursors (substances that participate in the reaction), materials obtained using this method may have unusual properties.

In particular, this method allowed the scientists to synthesize a substance with the formula Dy3Fe5O12 - iron-dysprosium garnet. Physical methods showed that the deposits consisted of 2-30 nm nanoparticles with crystal structure. Magnetic properties of the garnet were studied using magnetic circular dichroism.

The interest in these substances is determined by the wide range of garnet's physical properties. For example, almandine, natural iron and aluminum garnet (Fe3Al2Si3O12) is often used in jewelry due to its bright crimson color and hardness. Many garnets have magnetic properties as well. In particular, aluminum-yttrium (Y3Al5O12) and iron-yttrium garnets (Y3Fe5O12) are widely spread and quite well-studied.

They are widely used as components of microwave devices, circulators, phase switchers, magnetic photon devices, and insulators. Nanocrystals of these materials play a huge role in physics and technology of magnetic materials. The authors studied magnetic properties of iron-dysprosium garnet and found out that they changed if yttrium is replaced with dysprosium. The group plans an extensive study of garnets with yttrium replaced with other rare earth elements.


Related Links
Siberian Federal University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Quantum control
Moscow, Russia (SPX) Feb 05, 2018
An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have managed to create the world`s first quantum metamaterial which can be used as a control element in superconducting electrical circuits. Metamaterials are substances whose properties are determined not so much by the atoms they consist of, but by the atoms' structural arrangement. Each structure is hundreds of nanometers, and has its own set of prope ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Amazon opens plant-filled "The Spheres" buildings

NASA-JAXA Joint Statement on Space Exploration

Space station spacewalk postponed until mid-February

Microbes may help astronauts transform human waste into food

TECH SPACE
Putin gives nod to creation of Russian super heavy-lift launch vehicle

Indra and Zero 2 Infinity are teaming up to forge a path to the stars

PLD Space wins ESA backing for a Small Satellite Orbital Launcher

Launch Vehicle Lingo

TECH SPACE
NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

A vista from Mars rover looks back over journey so far

Opportunity prepares software update as Sol 5000 approaches

TECH SPACE
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

TECH SPACE
Brexit prompts EU to move satellite site to Spain

Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

TECH SPACE
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Pearly material for bendable heating elements

TECH SPACE
Stellar embryos in dwarf galaxy contain complex organic molecules

First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

TECH SPACE
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.