. | . |
Shocked meteorites provide clues to Earth's lower mantle by Staff Writers Tempe AZ (SPX) Jan 13, 2020
Deep below the Earth's surface lies a thick rocky layer called the mantle, which makes up the majority of our planet's volume. While Earth's mantle is too deep for humans to observe directly, certain meteorites can provide clues to this unreachable layer. In a study recently published in Science Advances, an international team of scientists, including Sang-Heon Dan Shim and Thomas Sharp of Arizona State University (ASU), have completed a complex analysis of a "shocked meteorite" (one that has experienced high-pressure and high-temperature conditions through impact events) and gained new insight into Earth's lower mantle.
Suizhou: a shocked meteorite For this study, lead author Luca Bindi of the University of Florence (Italy), Shim and Sharp of ASU's School of Earth and Space Exploration and Xiande Xie of the Guangzhou Institute of Geochemistry (China), focused their efforts on a sample of a shocked meteorite called Suizhou. "Suizhou was an ideal meteorite for our team to analyze," explains Shim, who specializes in using high-pressure experiments to study Earth's mantle. "It provided our team with samples of natural high-pressure minerals like those believed to make up the Earth's deep mantle." Suizhou fell in 1986 in the Hubei province in China. Immediately after the fall of this meteorite, a group of scientists were able to find and collect samples. "It was an observed fall," explains Sharp, who specializes in studying shocked meteorites to understand shock and impact in the solar system. "So it did not suffer any chemical weathering on Earth and therefore there is no alteration of the iron.
Bridgmanite: The dominant material in the lower mantle While it was previously thought that iron metal mainly existed in Earth's core, about 15 years ago scientists discovered in the lab that iron in bridgmanite can undergo self-oxidation from which it can produce metallic iron. This process, a chemical reaction called "charge disproportionation," is where atoms re-distribute electrons among themselves and produce two or three cation forms with different oxidation states (in this case, some Fe(II) ions in bridgmanite convert to Fe(III) and Fe(0), the latter of which forms metallic iron). The question remained, however, if this process could actually occur in nature. Using high-resolution electron microscope imaging and spectroscopy, the researchers were able to conduct a set of complex analyses of the Suizhou meteorite sample in nanometer scale. Through these analyses, the research team discovered metallic iron nanoparticles coexisting with bridgmanite in the shocked meteorite sample, representing the first direct evidence in nature of the iron disproportionation reaction, which so far had only been observed in high-pressure experiments. "This discovery demonstrates that charge disproportionation can occur in natural high-pressure environments and therefore in the deep interior of the Earth," says Shim. The implications of this study, however, go beyond just this discovery, and may ultimately help us understand the greater question of how Earth itself was oxidized. While we know that Earth's upper mantle is more oxidizing than other planets and that the more oxidizing conditions of the upper mantle may be linked to the sudden rise of oxygen in the atmosphere 2.5 billion years ago, we don't yet know how the upper mantle of the Earth became more oxidizing. "It is possible that when materials of the lower mantle are transported to the upper mantle by convection, there would be a loss of metallic iron and the oxidized iron in bridgmanite would cause more oxidizing conditions in the upper mantle," says Shim. "Our discovery provides a possible explanation for the more oxidizing conditions of the Earth's upper mantle and supports the idea that deep interior processes may have contributed to the great oxygenation event on the surface."
NASA animates world path of smoke and aerosols from Australian fires Greenbelt MD (SPX) Jan 10, 2020 A fleet of NASA satellites working together has been analyzing the aerosols and smoke from the massive fires burning in Australia. The fires in Australia are not just causing devastation locally. The unprecedented conditions that include searing heat combined with historic dryness, have led to the formation of an unusually large number of pyrocumulonimbus (pyrCbs) events. PyroCbs are essentially fire-induced thunderstorms. They are triggered by the uplift of ash, smoke, and burning material via su ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |