. 24/7 Space News .
TECH SPACE
Setting the gold standard
by Staff Writers
Gainesville, FL (SPX) Jul 12, 2016


Gold is highly desired for nanotechnology because it is malleable, does not react with oxygen and conducts heat well. Those properties make gold an ideal material for nanoparticles, especially those that will be placed in the body.

A team of University of Florida researchers has figured out how gold can be used in crystals grown by light to create nanoparticles, a discovery that has major implications for industry and cancer treatment and could improve the function of pharmaceuticals, medical equipment and solar panels.

Nanoparticles can be "grown" in crystal formations with special use of light, in a process called plasmon-driven synthesis. However, scientists have had limited control unless they used silver, but silver limits the uses for medical technology. The team is the first to successfully use gold, which works well within the human body, with this process.

"How does light actually play a role in the synthesis? [This knowledge] was not well developed," said David Wei, an associate professor of chemistry who led the research team. "Gold was the model system to demonstrate this."

Gold is highly desired for nanotechnology because it is malleable, does not react with oxygen and conducts heat well. Those properties make gold an ideal material for nanoparticles, especially those that will be placed in the body.

When polyvinylpyrrolidone, or PVP, a substance commonly found in pharmaceutical tablets, is used in the plasmon-driven synthesis, it enables scientists to better control the growth of crystals.

In Wei's research, PVP surprised the team by showing its potential to relay light-generated "hot" electrons to a gold surface to grow the crystals.

The research describes the first plasmonic synthesis strategy that can make high-yield gold nanoprisms. Even more exciting, the team has demonstrated that visible-range and low-power light can be used in the synthesis.

Combined with nanoparticles being used in solar photovoltaic devices, this method can even harness solar energy for chemical synthesis, to make nanomaterials or for general applications in chemistry.

Wei has spent the last decade working in nanotechnology. He is intrigued by its applications in photochemistry and biomedicine, especially in targeted drug delivery and photothermal therapeutics, which is crucial to cancer treatment. His team includes collaborators from Pacific Northwest National Laboratory, where he has worked as a visiting scholar, and Brookhaven National Laboratory.

In addition, the project has provided an educational opportunity for chemistry students: one high school student (through UF's Student Science Training Program), two University scholars who also funded by the Howard Hughes Medical Institute, five graduate students and two postdocs.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Florida
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Penn chemists establish fundamentals of ferroelectric materials
Philadelphia PA (SPX) Jul 07, 2016
Ferromagnetic materials, like compass needles, are useful because their magnetic polarization makes them rotate to align with magnetic fields. Ferroelectric materials behave in a similar way but with electric, rather than magnetic, fields. That external electric fields can reorient the electric polarization of these materials makes them ideal for certain memory applications, such as stored-value ... read more


TECH SPACE
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

TECH SPACE
Unusual form of sand dune discovered on Mars

Mars Rover's Sand-Dune Studies Yield Surprise

ChemCam findings hint at oxygen-rich past on Mars

Curiosity rover analysis suggests Mars has oxygen-rich history

TECH SPACE
Exploring inner space for outer space

Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

TECH SPACE
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

TECH SPACE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

TECH SPACE
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

TECH SPACE
Teenagers at Keele University Discover Possible New Exoplanet

What Happens When You Steam a Planet

How Planetary Age Reveals Water Content

When it comes to brown dwarfs, 'how far?' is a key question

TECH SPACE
Researchers improve catalyst efficiency for clean industries

A little impurity makes nanolasers shine

Researchers improve performance of cathode material by controlling oxygen activity

A sharper focus for plasmonic lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.