. 24/7 Space News .
Penn chemists establish fundamentals of ferroelectric materials
by Staff Writers
Philadelphia PA (SPX) Jul 07, 2016

Chemists from the University of Pennsylvania are enabling the next generation of research into ferroelectric materials. In a new study, published in Nature, they demonstrate a multiscale simulation of lead titanate oxide that provides new understanding about what it takes for polarizations within these materials to switch. Their simulations show that thermal fluctuations are responsible for the first nuclei from which changes in polarization spread. Image courtesy University of Pennsylvania. For a larger version of this image please go here.

Ferromagnetic materials, like compass needles, are useful because their magnetic polarization makes them rotate to align with magnetic fields. Ferroelectric materials behave in a similar way but with electric, rather than magnetic, fields. That external electric fields can reorient the electric polarization of these materials makes them ideal for certain memory applications, such as stored-value cards used in mass-transit systems. Since changes in their polarization cause such materials to physically change shape and vice-versa, a phenomenon known as piezoelectricity, ferroelectrics are also crucial "smart materials" for a variety of sensors, such as ultrasound machines and probe-based microscopes. They could even be used as nanoscale motors.

Chemists from the University of Pennsylvania are enabling the next generation of research into ferroelectric materials. In a new study, published in Nature, they demonstrate a multiscale simulation of lead titanate oxide that provides new understanding about what it takes for polarizations within these materials to switch.

This mathematical model, which is built up from the principles of quantum mechanics rather than being derived from physical experiments, will undergird efforts to find and design new ferroelectric materials to specification.

The research was conducted by Andrew M. Rappe, the Blanchard Professor of Chemistry in the School of Arts and Sciences, along with lab members Shi Liu and Ilya Grinberg.

Despite proliferation in commercial applications, there are many gaps in the theoretical principles that explain the behavior of ferroelectric materials. One such gap is in understanding how discrete regions of differing polarizations, known as domains, interact at their boundaries, or domain walls.

The ferroelectric material Rappe and his colleagues simulated features titanium ions inside six-pointed octahedral "cages" of oxygen ions. The polarization of a given domain is determined by which points of the cages the titanium ions move toward.

"If you apply an electric field that's opposite to the direction of the metal atoms' alignment," Rappe said, "they want to move and align with the electric field, but they also feel social pressure from their neighbors to stay the same as each other. That means it takes a lot energy for them all to flip their alignment direction at the same time.

"It also means that, generally, most of the flipping happens at domain walls. At walls, there's already some up and some down, so the ones that are the wrong way to the electric field can deviate from half their neighbors but join the other half of their neighbors and flip."

Domain walls therefore "move" across ferroelectric materials like wildfire, with domains that align with external electric fields growing as they convert neighbors. Unlike fire, however, the movement of domain walls can be easily stopped: they hold their position once the electric field is removed. This phenomenon is critical to ferroelectric applications, since the state of the material remains stable until a new field is applied.

The Rappe group's research is the first to show that mathematical models calibrated to quantum mechanics can accurately relate the strength of the electric field to the speed at which domain walls move.

"That's the most important thing," Rappe said. "There are some applications where you want the walls to be slow, and there are ones where you want the walls to be fast. If you don't know why the walls move and how the walls move, you can't even start to pick new materials and design them to have walls that move at the speed you need."

The researchers used their simulation to predict the shape of the material's hysteresis loop, the graph that describes the amount of energy necessary to switch it from one polarization and then back. Comparing their predictions to data from previous physical experiments validated the Penn team's approach.

Their simulations show that thermal fluctuations are responsible for the first nuclei from which changes in polarization spread. Increasing the strength of the electric field reduces the size of the nucleus needed to start this process, making it easier to begin.

This finding proves that the initial barrier to increasing the acceleration of a domain wall does not have to do with the presence of defects, or pockets of physical disorder within the crystal. That mechanism was hypothesized to explain why the rate of observed domain wall motion began slow, accelerated and then tapered off again. Explaining this behavior through purely quantum mechanical principles means that materials scientists do not need to strive for exceptional crystalline purity when designing ferroelectric devices.

The Rappe group's simulations also show that the process by which one domain converts to another is largely independent of the specific orientations of the two neighboring domains. Previous work, including by the Penn team, assumed that neighboring orientations that are 180 degrees apart, such as up-to-down, would switch by a different mechanism than ones that were 90 degrees apart, such as up-to-left. Their simulations now show that the same universal mechanism governs the motion of all types of domain walls.

Such more fundamental understanding of this phenomenon is necessary for designing piezoelectric devices that rely on precise, repeatable shape changes. Having a ferroelectric material drive the aperture of the lens on a smartphone camera, for example, would require designers to be confident that the material's physical response to polarization changes is consistent over many thousands of cycles.

The Rappe group's study is in line with the Materials Genome Initiative, a White House program that supports research into the design of new materials, including through computational approaches. Such approaches are necessary for moving new ferroelectrics out of laboratories and into the world at large, whether it is by finding the right material for a given application, or finding new applications based on the unique properties of hypothetical materials that would conform to the fundamental principles revealed by the Penn team's simulation.

"A key first step in materials design," Rappe said, "is developing some physical understanding of how things work, and we provide that. This research is allowing us to start to do materials design of domain-wall-based devices.

"There are many materials where the domain wall conducts electricity, but the bulk material does not, for example. In that case, you could apply an electric field to move the wall, and it would be like moving the position of a wire within the material. You could imagine a stack of these materials that only conduct electricity when they all line up and even being able to reprogram a circuit or make some sort of logic element that way."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Pennsylvania
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WSU researchers develop shape-changing 'smart' material
Pullman WA (SPX) Jul 03, 2016
Washington State University researchers have developed a unique, multifunctional smart material that can change shape from heat or light and assemble and disassemble itself. They have filed a provisional patent on the work. This is the first time researchers have been able to combine several smart abilities, including shape memory behavior, light-activated movement and self-healing behavio ... read more

Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

Curiosity Mars Rover Enters Precautionary Safe Mode

Scientists' Innovation Began With 'Wanting to Understand Why'

Opportunity finishing science investigations at the center of Marathon Valley

Moons of Mars probably formed by giant impact

Exploring inner space for outer space

Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

China to launch second space lab Tiangong-2 in September

Upgraded "space shuttle bus" aboard new carrier rocket

Three astronauts blast off for ISS in upgraded Soyuz craft

Soyuz-FG to launch new crew to ISS fully assembled

Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Lush Venus? Searing Earth? It could have happened

Teenagers at Keele University Discover Possible New Exoplanet

A surprising planet with three suns

What Happens When You Steam a Planet

A little impurity makes nanolasers shine

Russian Scientists Propose Charging Satellites Using Land-Based Lasers

Penn chemists establish fundamentals of ferroelectric materials

New mid-infrared laser system could detect atmospheric chemicals

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.