. 24/7 Space News .
ICE WORLD
Sentinel-1 and AI uncover glacier crevasses
by Staff Writers
Paris (ESA) Jan 10, 2023

Thwaites Glacier and Ice Tongue in West Antarctica imaged by the Copernicus Sentinel-2 mission on 10 January 2019. Thwaites is a particularly important part of the Antarctic Ice Sheet because it holds enough ice to raise global sea levels by around 60 cm and is considered by many to be at risk of rapid retreat, threatening coastal communities around the world. Recently, scientists have developed a new Artificial Intelligence, or AI, technique using radar images from the Copernicus Sentinel-1 mission to reveal how the Thwaites Glacier Ice Tongue is being damaged by squeezing and stretching as it flows from the middle of the continent to the coast. Being able to track fractures and crevasses in the ice beneath the overlying snow is key to better predicting the fate of floating ice tongues under climate change.

Scientists have developed a new Artificial Intelligence, or AI, technique using radar images from Europe's Copernicus Sentinel-1 satellite mission, to reveal how the Thwaites Glacier Ice Tongue in West Antarctica is being damaged by squeezing and stretching as it flows from the middle of the continent to the coast. Being able to track fractures and crevasses in the ice beneath the overlying snow is key to better predicting the fate of floating ice tongues under climate change.

A paper published in Nature Geoscience describes how ESA's development of the Copernicus Sentinel-1 satellites and routine synthetic aperture radar imaging of coastal Antarctica coupled with a novel artificial intelligence algorithm, has provided a glaciology tool with forensic science capability.

The paper's authors - a team of scientists from the University of Leeds and the University of Bristol in the UK - developed an AI algorithm, originally used to identify cells in microscope images, to spot crevasses forming in the ice in Sentinel-1's radar images of Thwaites Glacier Ice Tongue, as shown in the animation below.

Crevasses, or cracks opening in the moving ice mass, are indicators of stresses building up in the glacier.

Thwaites is a particularly important part of the Antarctic Ice Sheet because it holds enough ice to raise global sea levels by around 60 cm and is considered by many to be at risk of rapid retreat, threatening coastal communities around the world.

This new use of artificial intelligence will allow scientists to more accurately monitor and model changes to this important glacier.

The research focused on a part of the glacier system where the ice flows into the sea and begins to float - a point known as the grounding line. It forms the start of the Thwaites Eastern Ice Shelf and the western Thwaites Glacier Ice Tongue, which is also an ice shelf.

Despite being small in comparison to the size of the entire glacier, changes to the ice shelves could have wide-ranging implications for the whole glacier system and future sea-level rise.

The scientists wanted to know if crevassing or fracture formation in the glacier was more likely to occur with changes to the speed of the ice flow.

Using machine learning, the researchers taught a computer to look at radar images from the Copernicus Sentinel-1 mission and identify changes over the last decade.

Sentinel-1's all-weather radar allows scientists to track ice movement and peer through snow cover to unveil Thwaites Glacier Tongue's crocodile skin-like appearance, which is normally hidden from sight.

The analysis revealed that over the last six years, the Thwaites Glacier Ice Tongue has sped up and slowed down twice, by around 40% each time - from 4 km a year to 6 km a year before slowing. This is a substantial increase in the magnitude and frequency of speed change compared with past records.

The study found a complex interplay between crevasse formation and speed of the ice flow. When the ice flow quickens or slows, more crevasses are likely to form. In turn, the increase in crevasses causes the ice to change speed as the friction between the ice and underlying rock alters.

Dr Anna Hogg, a glaciologist at the University of Leeds, said, "Dynamic changes on ice shelves are traditionally thought to occur on timescales of decades to centuries, so it was surprising to see this huge glacier speed up and slow down so quickly.

"The study also demonstrates the key role that fractures play in un-corking the flow of ice, a process known as unbuttressing.

"Ice-sheet models must be evolved to account for the fact that ice can fracture, which will allow us to measure future sea-level contributions more accurately."

Trystan Surawy-Stepney, lead author of the paper and a doctoral researcher at the University of Leeds, added, "The nice thing about this study is the precision with which the crevasses were mapped.

"It has been known for a while that crevassing is an important component of ice-shelf dynamics and this study demonstrates that this link can be studied on a large scale with beautiful resolution, using computer vision techniques applied to the deluge of satellite images acquired each week."

Satellites orbiting Earth provide scientists with new data over the most remote and inaccessible regions of Antarctica. The radar on Sentinel-1 allows places like Thwaites Glacier to be imaged day or night, every week, all year round.

ESA's Dr Mark Drinkwater commented, "Studies like this would not be possible without the large volume of high-resolution Antarctic ice-sheet image data provided by Sentinel-1.

"By continuing to plan and prepare future polar-orbiting missions, we can carry on supporting work like this and broaden the scope of scientific research on vital areas of Earth's climate system."

As for the Thwaites Glacier Ice Tongue, it remains to be seen whether such short-term changes have any impact on the long-term dynamics of the glacier, or whether they are simply isolated symptoms of an ice shelf close to its end.

Research Report:Episodic dynamic change linked to damage on the thwaites glacier ice tongue


Related Links
Sentinel-1 at ESA
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Half of world's glaciers will vanish by year 2100 due to global warming
Washington DC (UPI) Jan 6, 2023
Half of the world's glaciers will melt and disappear before the turn of the next century, according to alarming new research that predicts greater fallout from global warming despite meaningful efforts in recent years to address environmental concerns. The study, published Thursday in the journal Science, projects that nearly 50% of the Earth's natural ice will dissolve by the year 2100, which is much quicker than scientists previously calculated if the planet warmed by only 1.5C - a benchmark ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Scientific samples, hardware return from the space station for more study

SpaceX Transporter-6 successfully launched Europe's first solar sail mission

Ukraine startups at CES strive to help the nation triumph

Green tech fights for limelight at CES gadget fest

ICE WORLD
Heat shield inspections underway on Artemis I Orion spacecraft

Virgin Orbit completes final End-to-end Rehearsal for first UK launch

Sidus Space awarded Bechtel Cable Assembly contract for Mobile Launcher 2

SpaceX rocket carries 114 satellites in first launch of 2023

ICE WORLD
Moving along the Marker Band: Sols 3705-3707

A New Year on Mars and a Brand-New Workspace: Sols 3702-3704

A Scuff for the New Year: Sols 3699-3702

MOXIE sets consecutive personal bests and Mars records for oxygen production

ICE WORLD
First rocket launch of the New Year leaves Wenchang for space

Space contractors release China's launch plans for 2023

China's space exploration spurred by helping humanity

China not in 'space race', industry insiders say

ICE WORLD
OneWeb to launch 40 satellites with SpaceX

Spire Global launched 6 satellites on SpaceX Transporter-6 Mission

NSLComm's BeetleSat LEO satellite launched on SpaceX Transporter 6 mission

Chinese commercial space company to launch stackable satellites

ICE WORLD
Sweden claims largest discovery of 'crucial' rare-earth elements in Europe

Unibap receives order from Thales Alenia Space

Riddle solved: Why was Roman concrete so durable?

Retired NASA satellite expected to fall to Earth on Sunday

ICE WORLD
Astronomers use 'little hurricanes' to weigh and date planets around young stars

Assembly begins on NASA's next tool to study exoplanets

What it would take to discover life on Saturn's icy moon Enceladus

Kepler's first exoplanet is spiraling toward its doom

ICE WORLD
SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission

Juno spacecraft recovering memory after 47th Flyby of Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.