24/7 Space News
TIME AND SPACE
Scientists release newly accurate map of all the matter in the universe
By overlaying maps of the sky from the Dark Energy Survey telescope (at left) and the South Pole Telescope (at right), the team could assemble a map of how the matter is distributed - crucial to understand the forces that shape the universe.
ADVERTISEMENT
     
Scientists release newly accurate map of all the matter in the universe
by Staff Writers
Chicago IL (SPX) Feb 01, 2023

Sometimes to know what the matter is, you have to find it first. When the universe began, matter was flung outward and gradually formed the planets, stars and galaxies that we know and love today. By carefully assembling a map of that matter today, scientists can try to understand the forces that shaped the evolution of the universe.

A group of scientists, including several with the University of Chicago and Fermi National Accelerator Laboratory, have released one of the most precise measurements ever made of how matter is distributed across the universe today.

Combining data from two major telescope surveys of the universe, the Dark Energy Survey and the South Pole Telescope, the analysis involved more than 150 researchers and is published as a set of three articles Jan. 31 in Physical Review D.

Among other findings, the analysis indicates that matter is not as "clumpy" as we would expect based on our current best model of the universe, which adds to a body of evidence that there may be something missing from our existing standard model of the universe.

Cooling and clumps
After the Big Bang created all the matter in the universe in a very hot, intense few moments about 13 billion years ago, this matter has been spreading outward, cooling and clumping as it goes. Scientists are very interested in tracing the path of this matter; by seeing where all the matter ended up, they can try to recreate what happened and what forces would have had to have been in play.

The first step is collecting enormous amounts of data with telescopes.

In this study, scientists combined data from two very different telescope surveys: The Dark Energy Survey, which surveyed the sky over six years from a mountaintop in Chile, and the South Pole Telescope, which looks for the faint traces of radiation that are still traveling across the sky from the first few moments of the universe.

Combining two different methods of looking at the sky reduces the chance that the results are thrown off by an error in one of the forms of measurement. "It functions like a cross-check, so it becomes a much more robust measurement than if you just used one or the other," said UChicago astrophysicist Chihway Chang, one of the lead authors of the studies.

In both cases, the analysis looked at a phenomenon called gravitational lensing. As light travels across the universe, it can be slightly bent as it passes objects with lots of gravity, like galaxies.

This method catches both regular matter and dark matter-the mysterious form of matter that we have only detected due to its effects on regular matter-because both regular and dark matter exert gravity.

By rigorously analyzing these two sets of data, the scientists could infer where all the matter ended up in the universe. It is more precise than previous measurements-that is, it narrows down the possibilities for where this matter wound up-compared to previous analyses, the authors said.

The majority of the results fit perfectly with the currently accepted best theory of the universe.

But there are also signs of a crack-one that has been suggested in the past by other analyses, too.

"It seems like there are slightly less fluctuations in the current universe, than we would predict assuming our standard cosmological model anchored to the early universe," said analysis coauthor and University of Hawaii astrophysicist Eric Baxter (UChicago PhD'14).

That is, if you make a model incorporating all the currently accepted physical laws, then take the readings from the beginning of the universe and extrapolate it forward through time, the results look slightly different from what we actually measure around us today.

Specifically, today's readings find the universe is less "clumpy"-clustering in certain areas rather than evenly spread out-than the model would predict.

If other studies continue to find the same results, scientists say, it may mean there is something missing from our existing model of the universe, but the results are not yet to the statistical level that scientists consider to be ironclad. That will take further study.

However, the analysis is a landmark as it yielded useful information from two very different telescope surveys. This is a much-anticipated strategy for the future of astrophysics, as more large telescopes come online in the next decades, but few had actually been carried out yet.

"I think this exercise showed both the challenges and benefits of doing these kinds of analyses," Chang said. "There's a lot of new things you can do when you combine these different angles of looking at the universe."

Related Links
University of Chicago
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Astronomers confirm age of most distant galaxy with oxygen
London, UK (SPX) Jan 25, 2023
A new study led by a joint team at Nagoya University and the National Astronomical Observatory of Japan has measured the cosmic age of a very distant galaxy. The team used the ALMA radio telescope array to detect a radio signal that has been travelling for approximately 97% of the age of the Universe. This discovery confirms the existence of galaxies in the very early Universe found by the James Webb Space Telescope. The research is published in Monthly Notices of the Royal Astronomical Society. T ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
Design a spacesuit for ESA

NASA announces finalists in challenge to design future astronaut food

NASA's Aerospace Safety Advisory Panel releases 2022 Annual Report

NASA names first person of Hispanic heritage as chief astronaut

TIME AND SPACE
Launches of Busek Thrusters push OneWeb constellation towards completion

Poland's SatRev signs on for future Virgin Orbit flights

SpaceX launches Hispasat's Amazonas Nexus communication satellite

First step toward predicting lifespan of electric space propulsion systems

TIME AND SPACE
Mars Helicopter at Three Forks

Searching for a Drill Site Near Encanto: Sols 3735-3736

Enchanting Encanto Calls: Sols 3732-3734

The faults and valleys of a Martian volcanic highland plateau

TIME AND SPACE
China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

TIME AND SPACE
OneWeb and Kazakhstan National Railways to work together

ATLAS works with AWS to advance federated network and expand ground station coverage

Sidus Space closes public offering

Lockheed Martin's first LM 400 Multi-Mission Spacecraft completed

TIME AND SPACE
AWE completes space environment tests

Momentus Vigoride-5 Status Update #2

Automating the math for decision-making under uncertainty

Understanding laser accelerated electron radiation through terahertz emissions

TIME AND SPACE
Researchers focus AI on finding exoplanets

A nearby potentially habitable Earth-mass exoplanet

Two nearby exoplanets might be habitable

Will machine learning help us find extraterrestrial life

TIME AND SPACE
SwRI models explain canyons on Pluto moon

NASA's Juno Team assessing camera after 48th flyby of Jupiter

Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.