. 24/7 Space News .
STELLAR CHEMISTRY
Scientists reach back in time to discover some of the most power-packed galaxies
by Staff Writers
Clemson SC (SPX) Feb 28, 2017


In the heart of an active galaxy, matter falling toward a supermassive black hole generates jets of particles traveling near the speed of light. Image courtesy of NASA's Goddard Space Flight Center Scientific Visualization Studio.

When the universe was young, a supermassive black hole - bloated to the bursting point with stupendous power - heaved out a jet of particle-infused energy that raced through the vastness of space at nearly the speed of light.

Billions of years later, a trio of Clemson University scientists, led by College of Science astrophysicist Marco Ajello, has identified this black hole and four others similar to it that range in age from 1.4 billion to 1.9 billion years old. These objects emit copious gamma rays, light of the highest energy, that are billions of times more energetic than light that is visible to the human eye.

The previously known earliest gamma-ray blazars - a type of galaxy whose intense emission is powered by extremely powerful relativistic jets launched by monstrous black holes - were more than 2 billion years old. Currently, the universe is estimated to be approximately 14 billion years old.

"The discovery of these supermassive black holes, which launch jets that emit more energy in one second than our sun will produce in its entire lifetime, was the culmination of a yearlong research project," said Ajello, who has spent much of his career studying the evolution of distant galaxies.

"Our next step is to increase our understanding of the mechanisms involved in the formation, development and activities of these amazing objects, which are the most powerful accelerators in the universe. We can't even come close to replicating such massive outputs of energy in our laboratories. The complexities we're attempting to unravel seem almost as mysterious as the black holes themselves."

Ajello conducted his research in conjunction with Clemson post-doc Vaidehi Paliya and Ph.D candidate Lea Marcotulli. The trio worked closely with the Fermi-Large Area Telescope collaboration, which is an international team of scientists that includes Roopesh Ojha, an astronomer at NASA's Goddard Space Flight Center in Greenbelt, Maryland; and Dario Gasparrini of the Italian Space Agency.

Their scientific paper titled "Gamma-Ray Blazars Within the First 2 Billion Years" was published Monday in a journal called Astrophysical Journal Letters. (Ackermann, M., et al. 2017, ApJL, 837, L5.)

The Clemson team's breakthroughs were made possible by recently juiced-up software on NASA's Fermi Gamma-ray Telescope. The refurbished software significantly boosted the orbiting telescope's sensitivity to a level that made these latest discoveries possible.

"People are calling it the cheapest refurbishment in history," Ajello said.

"Normally, for the Hubble Space Telescope, NASA had to send someone up to space to physically make these kinds of improvements. But in this case, they were able to do it remotely from an Earth-bound location. And of equal importance, the improvements were retroactive, which meant that the previous six years of data were also entirely reprocessed. This helped provide us with the information we needed to complete the first step of our research and also to strive onward in the learning process."

Using Fermi data, Ajello and Paliya began with a catalog of 1.4 million quasars, which are galaxies that harbor at their centers active supermassive black holes. Over the course of a year, they narrowed their search to 1,100 objects. Of these, five were finally determined to be newly discovered gamma-ray blazars that were the farthest away - and youngest - ever identified.

"After using our filters and other devices, we were left with about 1,100 sources. And then we did the diagnostics for all of these and were able to narrow them down to 25 to 30 sources," Paliya said.

"But we still had to confirm that what we had detected was scientifically authentic. So we performed a number of other simulations and were able to derive properties such as black hole mass and jet power. Ultimately, we confirmed that these five sources were guaranteed to be gamma-ray blazars, with the farthest one being about 1.4 billion years old from the beginning of time."

Marcotulli, who joined Ajello's group as a Ph.D student in 2016, has been studying the blazars' mechanisms by using images and data delivered from another orbiting NASA telescope, the Nuclear Spectroscopic Telescope Array (NuSTAR).

At first, Marcotulli's role was to understand the emission mechanism of gamma-ray blazars closer to us. Now she is turning her attention toward the most distant objects in a quest to understand what makes them so powerful.

"We're trying to understand the full spectrum of the energy distribution of these objects by using physical models," Marcotulli said.

"We are currently able to model what's happening far more accurately than previously devised, and eventually we'll be able to better understand what processes are occurring in the jets and which particles are radiating all the energy that we see. Are they electrons? Or protons? How are they interacting with surrounding photons? All these parameters are not fully understood right now. But every day we are deepening our understanding."

All galaxies have black holes at their centers - some actively feeding on the matter surrounding them, others lying relatively dormant. Our own galaxy has at its center a super-sized black hole that is currently dormant. Ajello said that only one of every 10 black holes in today's universe are active. But when the universe was much younger, it was closer to a 50-50 ratio.

The supermassive black holes at the center of the five newly discovered blazar galaxies are among the largest types of black holes ever observed, on the order of hundreds of thousands to billions of times the mass of our own sun. And their accompanying accretion disks - rotating swirls of matter that orbit the black holes - emit more than two trillion times the energy output of our sun.

One of the most surprising elements of Ajello's research is how quickly - by cosmic measures - these supersized black holes must have grown in only 1.4 billion years. In terms of our current knowledge of how black holes grow, 1.4 billion years is barely enough time for a black hole to reach the mass of the ones discovered by Ajello's team.

"How did these incomprehensibly enormous and energy-laden black holes form so quickly?" Ajello said.

"Is it because one black hole ate a lot all the time for a very long time? Or maybe because it bumped into other black holes and merged into one?

To be honest, we have no observations supporting either argument. There are mechanisms at work that we have yet to unravel. Puzzles that we have yet to solve. When we do eventually solve them, we will learn amazing things about how the universe was born, how it grew into what it has become, and what the distant future might hold as the universe continues to progress toward old age."

Research Report

STELLAR CHEMISTRY
Investigating Star Formation Is UMass Amherst Researcher's Mission
Amherst MA (SPX) Feb 28, 2017
University of Massachusetts Amherst astrophysicist Stella Offner, who has received a five-year, $429,000 faculty early career development (CAREER) grant from National Science Foundation (NSF), plans to use it not only to study how stars are born, but also to develop interactive online astronomy "tours" to enhance K-12 science education in local schools. The CAREER grant is NSF's highest aw ... read more

Related Links
Clemson University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

STELLAR CHEMISTRY
Elon Musk: tech dreamer reaching for sun, moon and stars

Moon tourists risk rough ride, experts say

ULA launches NROL-79 payload for NRO

SpaceX says it will fly civilians to the moon next year

STELLAR CHEMISTRY
New evidence for a water-rich history on Mars

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

Mars is more Earth-like than moon-like

STELLAR CHEMISTRY
Riding an asteroid: China's next space goal

China's 1st cargo spacecraft to make three rendezvous with Tiangong-2

Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

STELLAR CHEMISTRY
Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Turkey Moves Closer to Launching Own Space Agency

OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

STELLAR CHEMISTRY
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Scientists demonstrate improved particle warning to protect astronauts

Raytheon gets $1 billion radar contract for Qatar

New use for paper industry's sludge and fly ash in plastics

STELLAR CHEMISTRY
Hunting for giant planet analogs in our own backyard

Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

STELLAR CHEMISTRY
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.