. 24/7 Space News .
Scientists observe formation of individual viruses, a first
by Brooks Hays
Washington (UPI) Oct 4, 2019

Scientists have captured images of individual viruses forming, gaining insights into the mechanics of viral assembly.

"Structural biology has been able to resolve the structure of viruses with amazing resolution, down to every atom in every protein," Vinothan Manoharan, a professor of physics and chemical engineering at the Harvard University, said in a news release. "But we still didn't know how that structure assembles itself. Our technique gives the first window into how viruses assemble and reveals the kinetics and pathways in quantitative detail."

For the study, Manoharan and his research partners focused on the bacteriophage MS2, a virus that infects E. coli bacteria. MS2 is a single-stranded RNA viruses, the most abundant type of virus on Earth, and the type responsible for a variety of human maladies, including West Nile fever, gastroenteritis, hand, foot and mouth disease, polio, and the common cold.

Like most RNA viruses, the bacteriophage MS2 is relatively simple. It consists of a single piece of RNA with a diameter of 30 nanometers, boasting 3,600 nucleotides and 180 identical proteins. The proteins form hexagons and pentagons and organize themselves into a soccer ball-like shell, or capsid, around the virus.

To watch this formation process in real-time, scientists used interferometric scattering microscopy, a light scattering-based imaging technique. When light is scattered off the target object, it creates a dark spot in a larger field of light, which scientists observe as a proxy for the target itself.

In the lab, scientists watched as light scattered off RNA strands on a substrate created larger and larger dark spots in the larger field of light. Researchers were able to determine how many proteins were attaching to each RNA strand by watching the changing intensity of the dark spots.

"One thing we noticed immediately is that the intensity of all the spots started low and then shot up to the intensity of a full virus," Manoharan said. "That shooting up happened at different times. Some capsids assembled in under a minute, some took two or three, and some took more than five. But once they started assembling, they didn't backtrack. They grew and grew and then they were done."

Using models, scientists have previously hypothesized that viruses form one of two ways. One possibility is that proteins attach themselves sporadically to RNA strands and then organize to form a capsid. A second scenario requires a critical mass of proteins, or nucleus, to aggregate before the capsid can be formed.

The latest research -- detailed this week in the journal PNAS -- showed the second scenario best explains how a virus forms.

The timing of nucleus formation varies among different viruses, but the latest findings suggest that once a critical mass of proteins is reached, the virus begins to grow more quickly until it is fully formed.

Experiments in the lab showed that when a substrate was overrun with proteins, the virus was more likely to be improperly assembled.

"Viruses that assemble in this way have to balance the formation of nuclei with the growth of the capsid," said Manoharan. "If nuclei form too quickly, complete capsids can't grow. That observation might give us some insights into how to derail the assembly of pathogenic viruses."

The world's first video of assembling viruses fails to explain exactly how proteins organize themselves into capsids, but it does confirm the basic pathway for viral formation.

Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Life's building blocks may have formed in interstellar clouds
Sapporo, Japan (SPX) Sep 30, 2019
An experiment shows that one of the basic units of life - nucleobases - could have originated within giant gas clouds interspersed between the stars. Essential building blocks of DNA - compounds called nucleobases - have been detected for the first time in a simulated environment mimicking gaseous clouds that are found interspersed between stars. The finding, published in the journal Nature Communications, brings us closer to understanding the origins of life on Earth. "This result could be ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Russia bestows medal on US astronaut in failed launch

Astronauts will spend much of October outside the space station

Deep space exploration isn't a far-fetched possibility

Raytheon to help Jet Propulsion Lab explore the universe

Virgin Orbit selects RAF pilot as it plans satellite launch program

Jet taking off from Florida will launch NASA weather satellite

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

SwRI hypersonic research spotlights future flight challenges

Curiosity findings suggest Mars once featured dozens of shallow briny ponds

NASA's Mars 2020 rover tests descent-stage separation

NASA's Curiosity Rover finds an ancient oasis on Mars

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

Competition to find business ideas that are out of this world

UK space skills support sustainable development

Talking space with the next generation in Europe

Playmobil go above and beyond with ESA's Luca Parmitano

SwRI, international team use deep learning to create virtual 'super instrument'

How do the strongest magnets in the universe form?

When debris overwhelms space exploitation

A filament fit for space - silk is proven to thrive in outer space temperatures

Scientists observe formation of individual viruses, a first

Liquifying a rocky exoplanet

Were hot, humid summers the key to life's origins?

A planet that should not exist

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.