. 24/7 Space News .
STELLAR CHEMISTRY
Scientists narrow down the search for dark photons using decade-old particle collider data
by Staff Writers
Berkeley CA (SPX) Nov 09, 2017


This is the BaBar detector at SLAC National Accelerator Laboratory.

In its final years of operation, a particle collider in Northern California was refocused to search for signs of new particles that might help fill in some big blanks in our understanding of the universe.

A fresh analysis of this data, co-led by physicists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), limits some of the hiding places for one type of theorized particle - the dark photon, also known as the heavy photon - that was proposed to help explain the mystery of dark matter.

The latest result, published in the journal Physical Review Letters by the roughly 240-member BaBar Collaboration, adds to results from a collection of previous experiments seeking, but not yet finding, the theorized dark photons.

"Although it does not rule out the existence of dark photons, the BaBar results do limit where they can hide, and definitively rule out their explanation for another intriguing mystery associated with the property of the subatomic particle known as the muon," said Michael Roney, BaBar spokesperson and University of Victoria professor.

Dark matter, which accounts for an estimated 85 percent of the total mass of the universe, has only been observed by its gravitational interactions with normal matter. For example, the rotation rate of galaxies is much faster than expected based on their visible matter, suggesting there is "missing" mass that has so far remained invisible to us.

So physicists have been working on theories and experiments to help explain what dark matter is made of - whether it is composed of undiscovered particles, for example, and whether there may be a hidden or "dark" force that governs the interactions of such particles among themselves and with visible matter. The dark photon, if it exists, has been put forward as a possible carrier of this dark force.

Using data collected from 2006 to 2008 at SLAC National Accelerator Laboratory in Menlo Park, California, the analysis team scanned the recorded byproducts of particle collisions for signs of a single particle of light - a photon - devoid of associated particle processes.

The BaBar experiment, which ran from 1999 to 2008 at SLAC, collected data from collisions of electrons with positrons, their positively charged antiparticles. The collider driving BaBar, called PEP-II, was built through a collaboration that included SLAC, Berkeley Lab, and Lawrence Livermore National Laboratory. At its peak, the BaBar Collaboration involved over 630 physicists from 13 countries.

BaBar was originally designed to study the differences in the behavior between matter and antimatter involving a b-quark. Simultaneously with a competing experiment in Japan called Belle, BaBar confirmed the predictions of theorists and paved the way for the 2008 Nobel Prize. Berkeley Lab physicist Pier Oddone proposed the idea for BaBar and Belle in 1987 while he was the Lab's Physics division director.

The latest analysis used about 10 percent of BaBar's data - recorded in its final two years of operation. Its data collection was refocused on finding particles not accounted for in physics' Standard Model - a sort of rulebook for what particles and forces make up the known universe.

"BaBar performed an extensive campaign searching for dark sector particles, and this result will further constrain their existence," said Bertrand Echenard, a research professor at Caltech who was instrumental in this effort.

Yury Kolomensky, a physicist in the Nuclear Science Division at Berkeley Lab and a faculty member in the Department of Physics at UC Berkeley, said, "The signature (of a dark photon) in the detector would be extremely simple: one high-energy photon, without any other activity."

A number of the dark photon theories predict that the associated dark matter particles would be invisible to the detector. The single photon, radiated from a beam particle, signals that an electron-positron collision has occurred and that the invisible dark photon decayed to the dark matter particles, revealing itself in the absence of any other accompanying energy.

When physicists had proposed dark photons in 2009, it excited new interest in the physics community, and prompted a fresh look at BaBar's data. Kolomensky supervised the data analysis, performed by UC Berkeley undergraduates Mark Derdzinski and Alexander Giuffrida.

"Dark photons could bridge this hidden divide between dark matter and our world, so it would be exciting if we had seen it," Kolomensky said.

The dark photon has also been postulated to explain a discrepancy between the observation of a property of the muon spin and the value predicted for it in the Standard Model. Measuring this property with unprecedented precision is the goal of the Muon g-2 (pronounced gee-minus-two) Experiment at Fermi National Accelerator Laboratory.

Earlier measurements at Brookhaven National Laboratory had found that this property of muons - like a spinning top with a wobble that is ever-slightly off the norm - is off by about 0.0002 percent from what is expected. Dark photons were suggested as one possible particle candidate to explain this mystery, and a new round of experiments begun earlier this year should help to determine whether the anomaly is actually a discovery.

The latest BaBar result, Kolomensky said, largely "rules out these dark photon theories as an explanation for the g-2 anomaly, effectively closing this particular window, but it also means there is something else driving the g-2 anomaly if it's a real effect."

It's a common and constant interplay between theory and experiments, with theory adjusting to new constraints set by experiments, and experiments seeking inspiration from new and adjusted theories to find the next proving grounds for testing out those theories.

Scientists have been actively mining BaBar's data, Roney said, to take advantage of the well-understood experimental conditions and detector to test new theoretical ideas.

"Finding an explanation for dark matter is one of the most important challenges in physics today, and looking for dark photons was a natural way for BaBar to contribute," Roney said, adding that many experiments in operation or planned around the world are seeking to address this problem.

An upgrade of an experiment in Japan that is similar to BaBar, called Belle II, turns on next year. "Eventually, Belle II will produce 100 times more statistics compared to BaBar," Kolomensky said. "Experiments like this can probe new theories and more states, effectively opening new possibilities for additional tests and measurements."

"Until Belle II has accumulated significant amounts of data, BaBar will continue for the next several years to yield new impactful results like this one," Roney said.

Research paper

STELLAR CHEMISTRY
Newest dark matter map hints at where astrophysics must go for breakthroughs
San Francisco CA (SPX) Nov 01, 2017
The unveiling this summer of the most accurate cosmic picture ever taken of the distribution of dark matter has left astrophysicists feeling both delighted and frustrated. On the one hand, the new picture - taken of the "grown-up" universe, over the latter half of its 13.8-billion-year history - closely agrees with the "baby" pictures separately taken in recent years. On the other hand, th ... read more

Related Links
Lawrence Berkeley National Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Moves Up Critical Crew Safety Launch Abort Test

Brazil's tech junkies seek healing at digital detox clinic

NanoRacks launches Full External Cygnus Deployer on OA-8 to ISS

The road to Orion's launch

STELLAR CHEMISTRY
The state of commercial spaceports in 2017

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Orbital ATK launches eighth cargo mission to space

Vega launches Earth observation satellite for Morocco

STELLAR CHEMISTRY
How long can microorganisms live on Mars

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

STELLAR CHEMISTRY
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

STELLAR CHEMISTRY
Astronaut meets volcano

European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

STELLAR CHEMISTRY
Plasma from lasers can shed light on cosmic rays, solar eruptions

Leonardo tapped by British Royal Air Force for radar testing equipment

A new way to mix oil and water

Building better silk

STELLAR CHEMISTRY
Astronomers See Moving Shadows Around Planet-Forming Star

Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

STELLAR CHEMISTRY
Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.