. | . |
Plasma from lasers can shed light on cosmic rays, solar eruptions by Staff Writers Plainsboro NJ (SPX) Nov 13, 2017
Lasers that generate plasma can provide insight into bursts of subatomic particles that occur in deep space, scientists have found. Such findings could help scientists understand cosmic rays, solar flares and solar eruptions - emissions from the sun that can disrupt cell phone service and knock out power grids on Earth. Physicists have long observed that particles like electrons and atomic nuclei can accelerate to extremely high speeds in space. Researchers believe that processes associated with plasma, the hot fourth state of matter in which electrons have separated from atomic nuclei, might be responsible. Some models theorize that magnetic reconnection, which takes place when the magnetic field lines in plasma snap apart and reconnect, releasing large amounts of energy, might cause the acceleration. Addressing this issue, a team of researchers led by Will Fox, physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), recently used lasers to create conditions that mimic astrophysical behavior. The laboratory technique enables the study of outer-space-like plasma in a controlled and reproducible environment. "We want to reproduce the process in miniature to conduct these tests," said Fox, lead author of the research published in the journal Physics of Plasmas. The team used a simulation program called Plasma Simulation Code (PSC) that tracks plasma particles in a virtual environment, where they are acted on by simulated magnetic and electric fields. The code originated in Germany and was further developed by Fox and colleagues at the University of New Hampshire before he joined PPPL. Researchers conducted the simulations on the Titan supercomputer at the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility, at Oak Ridge National Laboratory, through the DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The simulations build on research by Fox and other scientists establishing that laser-created plasmas can facilitate the study of acceleration processes. In the new simulations, such plasmas bubble outward and crash into each other, triggering magnetic reconnection. These simulations also suggest two kinds of processes that transfer energy from the reconnection event to particles. During one process, known as Fermi acceleration, particles gain energy as they bounce back and forth between the outer edges of two converging plasma bubbles. In another process called X-line acceleration, the energy transfers to particles as they interact with the electric fields that arise during reconnection. Fox and the team now plan to conduct physical experiments that replicate conditions in the simulations using both the OMEGA laser facility at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility at the DOE's Lawrence Livermore National Laboratory. "We're trying to see if we can get particle acceleration and observe the energized particles experimentally," Fox said.
Washington (UPI) Nov 7, 2017 The Department of Defense on Monday announced a new contract with General Atomics Electromagnetic Systems Group for the Low Power Laser Demonstrator Phase 1 effort. The deal, worth more than $8.8 million, is a competitive cost-plus-fixed-fee contract that will enable General Atomics to perform the "next step" for the development of the LPLD that addresses "laser power and aperture size ... read more Related Links Princeton Plasma Physics Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |